Skip to content

steinbock.io

img_dtype

logger

mask_dtype

SteinbockIOException (SteinbockException)

Source code in steinbock/io.py
class SteinbockIOException(SteinbockException):
    pass

list_data_files(data_dir, base_files=None)

Source code in steinbock/io.py
def list_data_files(
    data_dir: Union[str, PathLike],
    base_files: Optional[Sequence[Union[str, PathLike]]] = None,
) -> List[Path]:
    if base_files is not None:
        return _list_related_files(base_files, data_dir, ".csv")
    return sorted(Path(data_dir).rglob("[!.]*.csv"))

list_image_files(img_dir, base_files=None)

Source code in steinbock/io.py
def list_image_files(
    img_dir: Union[str, PathLike],
    base_files: Optional[Sequence[Union[str, PathLike]]] = None,
) -> List[Path]:
    if base_files is not None:
        return _list_related_files(base_files, img_dir, ".tiff")
    return sorted(Path(img_dir).rglob("[!.]*.tiff"))

list_mask_files(mask_dir, base_files=None)

Source code in steinbock/io.py
def list_mask_files(
    mask_dir: Union[str, PathLike],
    base_files: Optional[Sequence[Union[str, PathLike]]] = None,
) -> List[Path]:
    if base_files is not None:
        return _list_related_files(base_files, mask_dir, ".tiff")
    return sorted(Path(mask_dir).rglob("[!.]*.tiff"))

list_neighbors_files(neighbors_dir, base_files=None)

Source code in steinbock/io.py
def list_neighbors_files(
    neighbors_dir: Union[str, PathLike],
    base_files: Optional[Sequence[Union[str, PathLike]]] = None,
) -> List[Path]:
    if base_files is not None:
        return _list_related_files(base_files, neighbors_dir, ".csv")
    return sorted(Path(neighbors_dir).rglob("[!.]*.csv"))

mmap_image(img_file, mode='r', **kwargs)

Source code in steinbock/io.py
def mmap_image(img_file: Union[str, PathLike], mode="r", **kwargs) -> np.ndarray:
    if "imagej" not in kwargs and mode == "r+":
        kwargs["imagej"] = True
    img_exists = Path(img_file).is_file()
    img = tifffile.memmap(img_file, mode=mode, **kwargs)
    if img_exists:
        if img.dtype != img_dtype:
            logger.warning(
                "Data type of memory-mapped image file %s (%s) is not %s",
                img_file,
                img.dtype,
                img_dtype,
            )
        img = _fix_image_shape(img_file, img)
    return img

mmap_mask(mask_file, mode='r', **kwargs)

Source code in steinbock/io.py
def mmap_mask(mask_file: Union[str, PathLike], mode="r", **kwargs) -> np.ndarray:
    if "imagej" not in kwargs and mode == "r+":
        kwargs["imagej"] = True
    mask_exists = Path(mask_file).is_file()
    mask = tifffile.memmap(mask_file, mode=mode, **kwargs)
    if mask_exists:
        if mask.dtype != mask_dtype:
            logger.warning(
                "Data type of memory-mapped mask file %s (%s) is not %s",
                mask_file,
                mask.dtype,
                mask_dtype,
            )
        mask = _fix_mask_shape(mask_file, mask)
    return mask

read_data(data_file)

Source code in steinbock/io.py
def read_data(data_file: Union[str, PathLike]) -> pd.DataFrame:
    return pd.read_csv(data_file, sep=",|;", index_col="Object", engine="python")

read_image(img_file, native_dtype=False)

Source code in steinbock/io.py
def read_image(
    img_file: Union[str, PathLike],
    native_dtype: bool = False,
) -> np.ndarray:
    img = tifffile.imread(img_file, squeeze=False)
    img = _fix_image_shape(img_file, img)
    if not native_dtype:
        img = _to_dtype(img, img_dtype)
    return img

read_image_info(image_info_file)

Source code in steinbock/io.py
def read_image_info(image_info_file: Union[str, PathLike]) -> pd.DataFrame:
    image_info = pd.read_csv(
        image_info_file,
        sep=",|;",
        dtype={
            "image": pd.StringDtype(),
            "width_px": pd.UInt16Dtype(),
            "height_px": pd.UInt16Dtype(),
            "num_channels": pd.UInt8Dtype(),
        },
        engine="python",
    )
    for required_col in ("image", "width_px", "height_px", "num_channels"):
        if required_col not in image_info:
            raise SteinbockIOException(
                f"Missing '{required_col}' column in {image_info_file}"
            )
    for notnan_col in ("image", "width_px", "height_px", "num_channels"):
        if notnan_col in image_info and image_info[notnan_col].isna().any():
            raise SteinbockIOException(
                f"Missing values for '{notnan_col}' in {image_info_file}"
            )
    for unique_col in ("image",):
        if unique_col in image_info:
            if image_info[unique_col].dropna().duplicated().any():
                raise SteinbockIOException(
                    f"Duplicated values for '{unique_col}'" f" in {image_info_file}"
                )
    return image_info

read_mask(mask_file, native_dtype=False)

Source code in steinbock/io.py
def read_mask(
    mask_file: Union[str, PathLike],
    native_dtype: bool = False,
) -> np.ndarray:
    mask = tifffile.imread(mask_file, squeeze=False)
    mask = _fix_mask_shape(mask_file, mask)
    if not native_dtype:
        mask = _to_dtype(mask, mask_dtype)
    return mask

read_neighbors(neighbors_file)

Source code in steinbock/io.py
def read_neighbors(neighbors_file: Union[str, PathLike]) -> pd.DataFrame:
    return pd.read_csv(
        neighbors_file,
        sep=",|;",
        usecols=["Object", "Neighbor", "Distance"],
        dtype={
            "Object": mask_dtype,
            "Neighbor": mask_dtype,
            "Distance": np.float32,
        },
        engine="python",
    )

read_panel(panel_file, unfiltered=False)

Source code in steinbock/io.py
def read_panel(
    panel_file: Union[str, PathLike], unfiltered: bool = False
) -> pd.DataFrame:
    panel = pd.read_csv(
        panel_file,
        sep=",|;",
        dtype={
            "channel": pd.StringDtype(),
            "name": pd.StringDtype(),
            "keep": pd.BooleanDtype(),
        },
        engine="python",
        true_values=["1"],
        false_values=["0"],
    )
    for required_col in ("channel", "name"):
        if required_col not in panel:
            raise SteinbockIOException(
                f"Missing '{required_col}' column in {panel_file}"
            )
    for notnan_col in ("channel", "keep"):
        if notnan_col in panel and panel[notnan_col].isna().any():
            raise SteinbockIOException(
                f"Missing values for '{notnan_col}' in {panel_file}"
            )
    for unique_col in ("channel", "name"):
        if unique_col in panel:
            if panel[unique_col].dropna().duplicated().any():
                raise SteinbockIOException(
                    f"Duplicated values for '{unique_col}' in {panel_file}"
                )
    if not unfiltered and "keep" in panel:
        panel = panel.loc[panel["keep"].astype(bool), :]
    return panel

write_data(data, data_file)

Source code in steinbock/io.py
def write_data(data: pd.DataFrame, data_file: Union[str, PathLike]) -> None:
    data = data.reset_index()
    data.to_csv(data_file, index=False)

write_image(img, img_file, ignore_dtype=False)

Source code in steinbock/io.py
def write_image(
    img: np.ndarray,
    img_file: Union[str, PathLike],
    ignore_dtype: bool = False,
) -> None:
    if not ignore_dtype:
        img = _to_dtype(img, img_dtype)
    tifffile.imwrite(
        img_file,
        data=img[np.newaxis, np.newaxis, :, :, :, np.newaxis],
        imagej=img.dtype in (np.uint8, np.uint16, np.float32),
    )

write_image_info(image_info, image_info_file)

Source code in steinbock/io.py
def write_image_info(
    image_info: pd.DataFrame, image_info_file: Union[str, PathLike]
) -> None:
    image_info.to_csv(image_info_file, index=False)

write_mask(mask, mask_file, ignore_dtype=False)

Source code in steinbock/io.py
def write_mask(
    mask: np.ndarray,
    mask_file: Union[str, PathLike],
    ignore_dtype: bool = False,
) -> None:
    if not ignore_dtype:
        mask = _to_dtype(mask, mask_dtype)
    tifffile.imwrite(
        mask_file,
        data=mask[np.newaxis, np.newaxis, np.newaxis, :, :, np.newaxis],
        imagej=mask.dtype in (np.uint8, np.uint16, np.float32),
    )

write_neighbors(neighbors, neighbors_file)

Source code in steinbock/io.py
def write_neighbors(
    neighbors: pd.DataFrame, neighbors_file: Union[str, PathLike]
) -> None:
    neighbors = neighbors.loc[:, ["Object", "Neighbor", "Distance"]].astype(
        {
            "Object": mask_dtype,
            "Neighbor": mask_dtype,
            "Distance": np.float32,
        }
    )
    neighbors.to_csv(neighbors_file, index=False)

write_panel(panel, panel_file)

Source code in steinbock/io.py
def write_panel(panel: pd.DataFrame, panel_file: Union[str, PathLike]) -> None:
    panel = panel.copy()
    for col in panel.columns:
        if panel[col].convert_dtypes().dtype == pd.BooleanDtype():
            panel[col] = panel[col].astype(pd.UInt8Dtype())
    panel.to_csv(panel_file, index=False)