steinbock.io
img_dtype
logger
mask_dtype
SteinbockIOException (SteinbockException)
Source code in steinbock/io.py
class SteinbockIOException(SteinbockException):
pass
list_data_files(data_dir, base_files=None)
Source code in steinbock/io.py
def list_data_files(
data_dir: Union[str, PathLike],
base_files: Optional[Sequence[Union[str, PathLike]]] = None,
) -> List[Path]:
if base_files is not None:
return _list_related_files(base_files, data_dir, ".csv")
return sorted(Path(data_dir).rglob("[!.]*.csv"))
list_image_files(img_dir, base_files=None)
Source code in steinbock/io.py
def list_image_files(
img_dir: Union[str, PathLike],
base_files: Optional[Sequence[Union[str, PathLike]]] = None,
) -> List[Path]:
if base_files is not None:
return _list_related_files(base_files, img_dir, ".tiff")
return sorted(Path(img_dir).rglob("[!.]*.tiff"))
list_mask_files(mask_dir, base_files=None)
Source code in steinbock/io.py
def list_mask_files(
mask_dir: Union[str, PathLike],
base_files: Optional[Sequence[Union[str, PathLike]]] = None,
) -> List[Path]:
if base_files is not None:
return _list_related_files(base_files, mask_dir, ".tiff")
return sorted(Path(mask_dir).rglob("[!.]*.tiff"))
list_neighbors_files(neighbors_dir, base_files=None)
Source code in steinbock/io.py
def list_neighbors_files(
neighbors_dir: Union[str, PathLike],
base_files: Optional[Sequence[Union[str, PathLike]]] = None,
) -> List[Path]:
if base_files is not None:
return _list_related_files(base_files, neighbors_dir, ".csv")
return sorted(Path(neighbors_dir).rglob("[!.]*.csv"))
mmap_image(img_file, mode='r', **kwargs)
Source code in steinbock/io.py
def mmap_image(img_file: Union[str, PathLike], mode="r", **kwargs) -> np.ndarray:
if "imagej" not in kwargs and mode == "r+":
kwargs["imagej"] = True
img_exists = Path(img_file).is_file()
img = tifffile.memmap(img_file, mode=mode, **kwargs)
if img_exists:
if img.dtype != img_dtype:
logger.warning(
"Data type of memory-mapped image file %s (%s) is not %s",
img_file,
img.dtype,
img_dtype,
)
img = _fix_image_shape(img_file, img)
return img
mmap_mask(mask_file, mode='r', **kwargs)
Source code in steinbock/io.py
def mmap_mask(mask_file: Union[str, PathLike], mode="r", **kwargs) -> np.ndarray:
if "imagej" not in kwargs and mode == "r+":
kwargs["imagej"] = True
mask_exists = Path(mask_file).is_file()
mask = tifffile.memmap(mask_file, mode=mode, **kwargs)
if mask_exists:
if mask.dtype != mask_dtype:
logger.warning(
"Data type of memory-mapped mask file %s (%s) is not %s",
mask_file,
mask.dtype,
mask_dtype,
)
mask = _fix_mask_shape(mask_file, mask)
return mask
read_data(data_file)
Source code in steinbock/io.py
def read_data(data_file: Union[str, PathLike]) -> pd.DataFrame:
return pd.read_csv(data_file, sep=",|;", index_col="Object", engine="python")
read_image(img_file, native_dtype=False)
Source code in steinbock/io.py
def read_image(
img_file: Union[str, PathLike],
native_dtype: bool = False,
) -> np.ndarray:
img = tifffile.imread(img_file, squeeze=False)
img = _fix_image_shape(img_file, img)
if not native_dtype:
img = _to_dtype(img, img_dtype)
return img
read_image_info(image_info_file)
Source code in steinbock/io.py
def read_image_info(image_info_file: Union[str, PathLike]) -> pd.DataFrame:
image_info = pd.read_csv(
image_info_file,
sep=",|;",
dtype={
"image": pd.StringDtype(),
"width_px": pd.UInt16Dtype(),
"height_px": pd.UInt16Dtype(),
"num_channels": pd.UInt8Dtype(),
},
engine="python",
)
for required_col in ("image", "width_px", "height_px", "num_channels"):
if required_col not in image_info:
raise SteinbockIOException(
f"Missing '{required_col}' column in {image_info_file}"
)
for notnan_col in ("image", "width_px", "height_px", "num_channels"):
if notnan_col in image_info and image_info[notnan_col].isna().any():
raise SteinbockIOException(
f"Missing values for '{notnan_col}' in {image_info_file}"
)
for unique_col in ("image",):
if unique_col in image_info:
if image_info[unique_col].dropna().duplicated().any():
raise SteinbockIOException(
f"Duplicated values for '{unique_col}'" f" in {image_info_file}"
)
return image_info
read_mask(mask_file, native_dtype=False)
Source code in steinbock/io.py
def read_mask(
mask_file: Union[str, PathLike],
native_dtype: bool = False,
) -> np.ndarray:
mask = tifffile.imread(mask_file, squeeze=False)
mask = _fix_mask_shape(mask_file, mask)
if not native_dtype:
mask = _to_dtype(mask, mask_dtype)
return mask
read_neighbors(neighbors_file)
Source code in steinbock/io.py
def read_neighbors(neighbors_file: Union[str, PathLike]) -> pd.DataFrame:
return pd.read_csv(
neighbors_file,
sep=",|;",
usecols=["Object", "Neighbor", "Distance"],
dtype={
"Object": mask_dtype,
"Neighbor": mask_dtype,
"Distance": np.float32,
},
engine="python",
)
read_panel(panel_file, unfiltered=False)
Source code in steinbock/io.py
def read_panel(
panel_file: Union[str, PathLike], unfiltered: bool = False
) -> pd.DataFrame:
panel = pd.read_csv(
panel_file,
sep=",|;",
dtype={
"channel": pd.StringDtype(),
"name": pd.StringDtype(),
"keep": pd.BooleanDtype(),
},
engine="python",
true_values=["1"],
false_values=["0"],
)
for required_col in ("channel", "name"):
if required_col not in panel:
raise SteinbockIOException(
f"Missing '{required_col}' column in {panel_file}"
)
for notnan_col in ("channel", "keep"):
if notnan_col in panel and panel[notnan_col].isna().any():
raise SteinbockIOException(
f"Missing values for '{notnan_col}' in {panel_file}"
)
for unique_col in ("channel", "name"):
if unique_col in panel:
if panel[unique_col].dropna().duplicated().any():
raise SteinbockIOException(
f"Duplicated values for '{unique_col}' in {panel_file}"
)
if not unfiltered and "keep" in panel:
panel = panel.loc[panel["keep"].astype(bool), :]
return panel
write_data(data, data_file)
Source code in steinbock/io.py
def write_data(data: pd.DataFrame, data_file: Union[str, PathLike]) -> None:
data = data.reset_index()
data.to_csv(data_file, index=False)
write_image(img, img_file, ignore_dtype=False)
Source code in steinbock/io.py
def write_image(
img: np.ndarray,
img_file: Union[str, PathLike],
ignore_dtype: bool = False,
) -> None:
if not ignore_dtype:
img = _to_dtype(img, img_dtype)
tifffile.imwrite(
img_file,
data=img[np.newaxis, np.newaxis, :, :, :, np.newaxis],
imagej=img.dtype in (np.uint8, np.uint16, np.float32),
)
write_image_info(image_info, image_info_file)
Source code in steinbock/io.py
def write_image_info(
image_info: pd.DataFrame, image_info_file: Union[str, PathLike]
) -> None:
image_info.to_csv(image_info_file, index=False)
write_mask(mask, mask_file, ignore_dtype=False)
Source code in steinbock/io.py
def write_mask(
mask: np.ndarray,
mask_file: Union[str, PathLike],
ignore_dtype: bool = False,
) -> None:
if not ignore_dtype:
mask = _to_dtype(mask, mask_dtype)
tifffile.imwrite(
mask_file,
data=mask[np.newaxis, np.newaxis, np.newaxis, :, :, np.newaxis],
imagej=mask.dtype in (np.uint8, np.uint16, np.float32),
)
write_neighbors(neighbors, neighbors_file)
Source code in steinbock/io.py
def write_neighbors(
neighbors: pd.DataFrame, neighbors_file: Union[str, PathLike]
) -> None:
neighbors = neighbors.loc[:, ["Object", "Neighbor", "Distance"]].astype(
{
"Object": mask_dtype,
"Neighbor": mask_dtype,
"Distance": np.float32,
}
)
neighbors.to_csv(neighbors_file, index=False)
write_panel(panel, panel_file)
Source code in steinbock/io.py
def write_panel(panel: pd.DataFrame, panel_file: Union[str, PathLike]) -> None:
panel = panel.copy()
for col in panel.columns:
if panel[col].convert_dtypes().dtype == pd.BooleanDtype():
panel[col] = panel[col].astype(pd.UInt8Dtype())
panel.to_csv(panel_file, index=False)