steinbock.segmentation
cellprofiler
special
data
special
deepcell
deepcell_available
logger
Application (Enum)
Source code in steinbock/segmentation/deepcell.py
class Application(Enum):
""""""
MESMER = partial(_mesmer_application)
MESMER
SteinbockDeepcellSegmentationException (SteinbockSegmentationException)
Source code in steinbock/segmentation/deepcell.py
class SteinbockDeepcellSegmentationException(SteinbockSegmentationException):
pass
try_segment_objects(img_files, application, model=None, channelwise_minmax=False, channelwise_zscore=False, channel_groups=None, aggr_func=<function mean at 0x7ff69e153700>, **predict_kwargs)
Source code in steinbock/segmentation/deepcell.py
def try_segment_objects(
img_files: Sequence[Union[str, PathLike]],
application: Application,
model: Optional["Model"] = None,
channelwise_minmax: bool = False,
channelwise_zscore: bool = False,
channel_groups: Optional[np.ndarray] = None,
aggr_func: Callable[[np.ndarray], np.ndarray] = np.mean,
**predict_kwargs,
) -> Generator[Tuple[Path, np.ndarray], None, None]:
app, predict = application.value(model=model)
for img_file in img_files:
try:
img = io.read_image(img_file)
if channelwise_minmax:
channel_mins = np.nanmin(img, axis=(1, 2))
channel_maxs = np.nanmax(img, axis=(1, 2))
channel_ranges = channel_maxs - channel_mins
img -= channel_mins[:, np.newaxis, np.newaxis]
img[channel_ranges > 0] /= channel_ranges[
channel_ranges > 0, np.newaxis, np.newaxis
]
if channelwise_zscore:
channel_means = np.nanmean(img, axis=(1, 2))
channel_stds = np.nanstd(img, axis=(1, 2))
img -= channel_means[:, np.newaxis, np.newaxis]
img[channel_stds > 0] /= channel_stds[
channel_stds > 0, np.newaxis, np.newaxis
]
if channel_groups is not None:
img = np.stack(
[
aggr_func(img[channel_groups == channel_group], axis=0)
for channel_group in np.unique(channel_groups)
if not np.isnan(channel_group)
]
)
mask = predict(img, **predict_kwargs)
yield Path(img_file), mask
del img, mask
except:
logger.exception(f"Error segmenting objects in {img_file}")