steinbock.measurement
cellprofiler
special
cellprofiler
create_and_save_measurement_pipeline(measurement_pipeline_file, num_channels)
Source code in steinbock/measurement/cellprofiler/cellprofiler.py
def create_and_save_measurement_pipeline(
measurement_pipeline_file: Union[str, PathLike], num_channels: int
):
with _measurement_pipeline_file_template.open(mode="r") as f:
s = f.read()
s = s.replace("{{NUM_CHANNELS}}", str(num_channels))
with Path(measurement_pipeline_file).open(mode="w") as f:
f.write(s)
run_object_measurement(cellprofiler_binary, measurement_pipeline_file, input_dir, output_dir, cellprofiler_plugin_dir=None)
Source code in steinbock/measurement/cellprofiler/cellprofiler.py
def run_object_measurement(
cellprofiler_binary: str,
measurement_pipeline_file: Union[str, PathLike],
input_dir: Union[str, PathLike],
output_dir: Union[str, PathLike],
cellprofiler_plugin_dir: Union[str, PathLike, None] = None,
):
args = [
cellprofiler_binary,
"-c",
"-r",
"-p",
str(measurement_pipeline_file),
"-i",
str(input_dir),
"-o",
str(output_dir),
]
if cellprofiler_plugin_dir is not None:
args.append("--plugins-directory")
args.append(str(cellprofiler_plugin_dir))
return run_captured(args)
intensities
IntensityAggregation
MAX
MEAN
MEDIAN
MIN
STD
SUM
VAR
measure_intensites(img, mask, channel_names, intensity_aggregation)
Source code in steinbock/measurement/intensities.py
def measure_intensites(
img: np.ndarray,
mask: np.ndarray,
channel_names: Sequence[str],
intensity_aggregation: IntensityAggregation,
) -> pd.DataFrame:
object_ids = np.unique(mask[mask != 0])
data = {
channel_name: intensity_aggregation.value(
img[i], labels=mask, index=object_ids
)
for i, channel_name in enumerate(channel_names)
}
return pd.DataFrame(
data=data,
index=pd.Index(object_ids, dtype=io.mask_dtype, name="Object"),
)
measure_intensities_from_disk(img_files, mask_files, channel_names, intensity_aggregation)
Source code in steinbock/measurement/intensities.py
def measure_intensities_from_disk(
img_files: Sequence[Union[str, PathLike]],
mask_files: Sequence[Union[str, PathLike]],
channel_names: Sequence[str],
intensity_aggregation: IntensityAggregation,
) -> Generator[Tuple[Path, Path, pd.DataFrame], None, None]:
for img_file, mask_file in zip(img_files, mask_files):
intensities = measure_intensites(
io.read_image(img_file),
io.read_mask(mask_file),
channel_names,
intensity_aggregation,
)
yield Path(img_file), Path(mask_file), intensities
del intensities
neighbors
NeighborhoodType
CENTROID_DISTANCE
EUCLIDEAN_BORDER_DISTANCE
EUCLIDEAN_PIXEL_EXPANSION
measure_neighbors(mask, neighborhood_type, metric=None, dmax=None, kmax=None)
Source code in steinbock/measurement/neighbors.py
def measure_neighbors(
mask: np.ndarray,
neighborhood_type: NeighborhoodType,
metric: Optional[str] = None,
dmax: Optional[float] = None,
kmax: Optional[int] = None,
) -> pd.DataFrame:
return neighborhood_type.value(mask, metric=metric, dmax=dmax, kmax=kmax)
measure_neighbors_from_disk(mask_files, neighborhood_type, metric=None, dmax=None, kmax=None)
Source code in steinbock/measurement/neighbors.py
def measure_neighbors_from_disk(
mask_files: Sequence[Union[str, PathLike]],
neighborhood_type: NeighborhoodType,
metric: Optional[str] = None,
dmax: Optional[float] = None,
kmax: Optional[int] = None,
) -> Generator[Tuple[Path, pd.DataFrame], None, None]:
for mask_file in mask_files:
mask = io.read_mask(mask_file)
neighbors = measure_neighbors(
mask,
neighborhood_type,
metric=metric,
dmax=dmax,
kmax=kmax,
)
yield Path(mask_file), neighbors
del neighbors
regionprops
measure_regionprops(img, mask, skimage_regionprops)
Source code in steinbock/measurement/regionprops.py
def measure_regionprops(
img: np.ndarray, mask: np.ndarray, skimage_regionprops: Sequence[str]
) -> pd.DataFrame:
data = regionprops_table(
mask,
intensity_image=np.moveaxis(img, 0, -1),
properties=skimage_regionprops,
)
object_ids = data.pop("label")
return pd.DataFrame(
data=data,
index=pd.Index(object_ids, dtype=io.mask_dtype, name="Object"),
)
measure_regionprops_from_disk(img_files, mask_files, skimage_regionprops)
Source code in steinbock/measurement/regionprops.py
def measure_regionprops_from_disk(
img_files: Sequence[Union[str, PathLike]],
mask_files: Sequence[Union[str, PathLike]],
skimage_regionprops: Sequence[str],
) -> Generator[Tuple[Path, Path, pd.DataFrame], None, None]:
skimage_regionprops = list(skimage_regionprops)
if "label" not in skimage_regionprops:
skimage_regionprops.insert(0, "label")
for img_file, mask_file in zip(img_files, mask_files):
regionprops = measure_regionprops(
io.read_image(img_file),
io.read_mask(mask_file),
skimage_regionprops,
)
yield Path(img_file), Path(mask_file), regionprops
del regionprops