Skip to content

steinbock.utils

expansion

expand_mask(mask, distance)

Source code in steinbock/utils/expansion.py
def expand_mask(mask: np.ndarray, distance: int) -> np.ndarray:
    expanded_mask = expand_labels(mask, distance=distance)
    return expanded_mask

try_expand_masks_from_disk(mask_files, distance, mmap=False)

Source code in steinbock/utils/expansion.py
def try_expand_masks_from_disk(
    mask_files: Sequence[Union[str, PathLike]], distance: int, mmap: bool = False
) -> Generator[Tuple[Path, np.ndarray], None, None]:
    for mask_file in mask_files:
        if mmap:
            mask = io.mmap_mask(mask_file)
        else:
            mask = io.read_mask(mask_file, native_dtype=True)
        expanded_mask = expand_mask(mask, distance=distance)
        yield Path(mask_file), expanded_mask

matching

logger

match_masks(mask1, mask2)

Source code in steinbock/utils/matching.py
def match_masks(mask1: np.ndarray, mask2: np.ndarray) -> pd.DataFrame:
    nz1 = mask1 != 0
    nz2 = mask2 != 0
    object_ids1 = []
    object_ids2 = []
    for object_id1 in np.unique(mask1[nz1]):
        for object_id2 in np.unique(mask2[nz2 & (mask1 == object_id1)]):
            object_ids1.append(object_id1)
            object_ids2.append(object_id2)
    for object_id2 in np.unique(mask2[nz2]):
        for object_id1 in np.unique(mask1[nz1 & (mask2 == object_id2)]):
            object_ids1.append(object_id1)
            object_ids2.append(object_id2)
    df = pd.DataFrame(data={"Object1": object_ids1, "Object2": object_ids2})
    df.drop_duplicates(inplace=True, ignore_index=True)
    return df

try_match_masks_from_disk(mask_files1, mask_files2, mmap=False)

Source code in steinbock/utils/matching.py
def try_match_masks_from_disk(
    mask_files1: Sequence[Union[str, PathLike]],
    mask_files2: Sequence[Union[str, PathLike]],
    mmap: bool = False,
) -> Generator[Tuple[Path, Path, pd.DataFrame], None, None]:
    for mask_file1, mask_file2 in zip(mask_files1, mask_files2):
        try:
            if mmap:
                mask1 = io.mmap_mask(mask_file1)
                mask2 = io.mmap_mask(mask_file2)
            else:
                mask1 = io.read_mask(mask_file1)
                mask2 = io.read_mask(mask_file2)
            df = match_masks(mask1, mask2)
            del mask1, mask2
            yield Path(mask_file1), Path(mask_file2), df
            del df
        except Exception as e:
            logger.exception(f"Error matching masks {mask_file1, mask_file2}: {e}")

mosaics

logger

SteinbockMosaicsUtilsException (SteinbockUtilsException)

Source code in steinbock/utils/mosaics.py
class SteinbockMosaicsUtilsException(SteinbockUtilsException):
    pass

try_extract_tiles_from_disk_to_disk(img_files, tile_dir, tile_size, mmap=False)

Source code in steinbock/utils/mosaics.py
def try_extract_tiles_from_disk_to_disk(
    img_files: Sequence[Union[str, PathLike]],
    tile_dir: Union[str, PathLike],
    tile_size: int,
    mmap: bool = False,
) -> Generator[Tuple[Path, np.ndarray], None, None]:
    for img_file in img_files:
        try:
            if mmap:
                img = io.mmap_image(img_file)
            else:
                img = io.read_image(img_file, native_dtype=True)
            if img.shape[-1] % tile_size == 1 or img.shape[-2] % tile_size == 1:
                logger.warning(
                    "Chosen tile size yields UNSTITCHABLE tiles of 1 pixel "
                    f"width or height for image {img_file}"
                )
            for tile_x in range(0, img.shape[-1], tile_size):
                for tile_y in range(0, img.shape[-2], tile_size):
                    tile = img[
                        :,
                        tile_y : (tile_y + tile_size),
                        tile_x : (tile_x + tile_size),
                    ]
                    tile_file = Path(tile_dir) / (
                        f"{Path(img_file).stem}_tx{tile_x}_ty{tile_y}"
                        f"_tw{tile.shape[-1]}_th{tile.shape[-2]}.tiff"
                    )
                    io.write_image(tile, tile_file, ignore_dtype=True)
                    yield tile_file, tile
                    del tile
            del img
        except Exception as e:
            logger.exception(f"Error extracting tiles: {img_file}: {e}")

try_stitch_tiles_from_disk_to_disk(tile_files, img_dir, relabel=False, mmap=False)

Source code in steinbock/utils/mosaics.py
def try_stitch_tiles_from_disk_to_disk(
    tile_files: Sequence[Union[str, PathLike]],
    img_dir: Union[str, PathLike],
    relabel: bool = False,
    mmap: bool = False,
) -> Generator[Tuple[Path, np.ndarray], None, None]:
    class TileInfo(NamedTuple):
        tile_file: Path
        x: int
        y: int
        width: int
        height: int

    tile_file_stem_pattern = re.compile(
        r"(?P<img_file_stem>.+)_tx(?P<x>\d+)_ty(?P<y>\d+)"
        r"_tw(?P<width>\d+)_th(?P<height>\d+)"
    )
    img_tile_infos: Dict[str, List[TileInfo]] = {}
    for tile_file in tile_files:
        m = tile_file_stem_pattern.fullmatch(Path(tile_file).stem)
        if m is None:
            raise SteinbockMosaicsUtilsException(
                f"Malformed tile file name: {tile_file}"
            )
        img_file_stem = m.group("img_file_stem")
        tile_info = TileInfo(
            Path(tile_file),
            int(m.group("x")),
            int(m.group("y")),
            int(m.group("width")),
            int(m.group("height")),
        )
        if img_file_stem not in img_tile_infos:
            img_tile_infos[img_file_stem] = []
        img_tile_infos[img_file_stem].append(tile_info)
    for img_file_stem, tile_infos in img_tile_infos.items():
        img_file = Path(img_dir) / f"{img_file_stem}.tiff"
        try:
            tile = io.read_image(tile_infos[0].tile_file, native_dtype=True)
            img_shape = (
                tile.shape[0],
                max(ti.y + ti.height for ti in tile_infos),
                max(ti.x + ti.width for ti in tile_infos),
            )
            if mmap:
                img = io.mmap_image(
                    img_file, mode="r+", shape=img_shape, dtype=tile.dtype
                )
            else:
                img = np.zeros(img_shape, dtype=tile.dtype)
            for i, tile_info in enumerate(tile_infos):
                if i > 0:
                    tile = io.read_image(tile_info.tile_file, native_dtype=True)
                img[
                    :,
                    tile_info.y : tile_info.y + tile_info.height,
                    tile_info.x : tile_info.x + tile_info.width,
                ] = tile
                if mmap:
                    img.flush()
            if relabel:
                img[0, :, :] = measure.label(img[0, :, :])
            if mmap:
                img.flush()
            else:
                io.write_image(img, img_file, ignore_dtype=True)
            yield img_file, img
            del img
        except Exception as e:
            logger.exception(f"Error stitching tiles: {img_file}: {e}")