Last updated: 2022-02-25

Checks: 6 1

Knit directory: MelanomaIMC/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200728) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0deb8ee. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rproj.user/
    Ignored:    code/.DS_Store
    Ignored:    code/._.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/._.DS_Store
    Ignored:    data/data_for_analysis/
    Ignored:    data/data_for_analysis_zenodo/
    Ignored:    data/full_data.zip
    Ignored:    data/full_data/

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/09_Tcell_Score.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/09_Tcell_Score.Rmd) and HTML (docs/09_Tcell_Score.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html fe331cb toobiwankenobi 2022-02-22 re-run whole analysis
html 73aa800 toobiwankenobi 2022-02-22 add .html for static website
Rmd 3da15db toobiwankenobi 2021-11-24 changes for revision
html 4109ff1 toobiwankenobi 2021-07-07 delete html files and adapt gitignore
Rmd 3203891 toobiwankenobi 2021-02-19 change celltype names
html 3203891 toobiwankenobi 2021-02-19 change celltype names
Rmd ee1595d toobiwankenobi 2021-02-12 clean repo and adapt files
html ee1595d toobiwankenobi 2021-02-12 clean repo and adapt files
Rmd 2e443a5 toobiwankenobi 2021-02-09 remove files that are not needed

knitr::opts_chunk$set(echo = TRUE, message= FALSE)
knitr::opts_knit$set(root.dir = rprojroot::find_rstudio_root_file())

Load libraries

sapply(list.files("code/helper_functions/", full.names = TRUE), source)
        code/helper_functions//calculateSummary.R
value   ?                                        
visible FALSE                                    
        code/helper_functions//censor_dat.R
value   ?                                  
visible FALSE                              
        code/helper_functions//detect_mRNA_expression.R
value   ?                                              
visible FALSE                                          
        code/helper_functions//DistanceToClusterCenter.R
value   ?                                               
visible FALSE                                           
        code/helper_functions//findMilieu.R code/helper_functions//findPatch.R
value   ?                                   ?                                 
visible FALSE                               FALSE                             
        code/helper_functions//getInfoFromString.R
value   ?                                         
visible FALSE                                     
        code/helper_functions//getSpotnumber.R
value   ?                                     
visible FALSE                                 
        code/helper_functions//plotCellCounts.R
value   ?                                      
visible FALSE                                  
        code/helper_functions//plotCellFractions.R
value   ?                                         
visible FALSE                                     
        code/helper_functions//plotDist.R code/helper_functions//read_Data.R
value   ?                                 ?                                 
visible FALSE                             FALSE                             
        code/helper_functions//scatter_function.R
value   ?                                        
visible FALSE                                    
        code/helper_functions//sceChecks.R
value   ?                                 
visible FALSE                             
        code/helper_functions//validityChecks.R
value   ?                                      
visible FALSE                                  
library(LSD)
library(SingleCellExperiment)
library(ggplot2)
library(scater)
library(viridis)
library(igraph)
library(CATALYST)
library(reshape2)
library(cowplot)
library(ggridges)
library(pheatmap)
library(tidyverse)

Load Data

Cytotoxic T cell Scoring

T Cell Density

We want to calculate the T cell density. we calculate this per mm2. We use the count for cytotxic T cells as defined under “03_cell_type_definition” script

cur_df <- data.frame(celltype = sce_prot$celltype,
                             ImageNumber = sce_prot$ImageNumber)

# count cell types per images
cellcount <- (t(table(cur_df)))

# here we get the imagesize from the image metadata
im_size <- (image_mat$Height_cellmask * image_mat$Width_cellmask)/1000000

# data frame
cellcount <- data.frame(cellcount)

# we calculate the density for each celltype for 1 mm2
cellcount$density <- cellcount$Freq/im_size[cellcount$ImageNumber]
cellcount <- cellcount[cellcount$celltype == "CD8+ T cell",]

# there are roughly 60 images with 50 or less cytotoxic T cells
hist(cellcount$density,breaks = 300)

Version Author Date
5418dcd toobiwankenobi 2022-02-22
# add cyotoxic T cell density to sce
cellcount$ImageNumber <- as.integer(cellcount$ImageNumber)
cur_sce <- data.frame(colData(sce_prot))
cur_sce <- left_join(cur_sce, cellcount[,c("ImageNumber", "density")])
sce_prot$cyotoxic_density_image <- cur_sce$density

T cell density score per image

  • absent: 1. quantile
  • low: 2. quantile
  • med: 3. quantile
  • high: 4. quantile
# print quantiles
quantile(cellcount$density)
        0%        25%        50%        75%       100% 
   0.00000   27.07253  145.20423  425.25484 3127.62105 
# define a vector with all ImgeNumbers
T_density_scores <- c(1:length(unique(cellcount$ImageNumber)))

T_density_scores  <- rep("unassigned",length(unique(cellcount$ImageNumber)))

# use quantiles for scoring system
T_absent <- which(cellcount$density <= quantile(cellcount$density)[[2]])
T_low <- which(cellcount$density > quantile(cellcount$density)[[2]] & cellcount$density <= quantile(cellcount$density)[[3]])
T_med <- which(cellcount$density > quantile(cellcount$density)[[3]] & cellcount$density <= quantile(cellcount$density)[[4]])
T_high <- which(cellcount$density > quantile(cellcount$density)[[4]])

T_density_scores[T_absent] <- "absent"
T_density_scores[T_low] <- "low"
T_density_scores[T_med] <- "med"
T_density_scores[T_high] <- "high"

# now we add the information to the single cell experiment
sce_prot$Tcell_density_score_image <- T_density_scores[sce_prot$ImageNumber]
sce_prot$Tcell_density_score_image <- factor(sce_prot$Tcell_density_score_image, levels = c("absent", "low", "med", "high"))

# number of samples per group
data.frame(colData(sce_prot)) %>%
  distinct(Description, .keep_all = T) %>%
  group_by(Tcell_density_score_image) %>%
  summarise(n=n())
# A tibble: 4 × 2
  Tcell_density_score_image     n
  <fct>                     <int>
1 absent                       42
2 low                          41
3 med                          41
4 high                         42

E_I_D score compared to T_frac_score_per_ImageNumber

cur_df <- data.frame(T_density = sce_prot$Tcell_density_score_image,
                     E_I_D = sce_prot$E_I_D)

table(cur_df)
         E_I_D
T_density      D      E    E/D      I    I/E
   absent  36924 108197  18583  29679  23922
   low      8541  64575   4971  65358  53144
   med         0  83260      0  84834  63683
   high        0  50697      0 133620 131362

Add Scores to RNA data set

sce_rna$infiltration <- NULL
sce_rna$T_frac_score_per_BlockID <- NULL
sce_rna$T_frac_score_per_ImageNumber <- NULL
sce_rna$T_frac_score_per_PatientID <- NULL
sce_rna$cyotoxic_density_image <- NULL

description_data <- data.frame(colData(sce_prot)) %>%
  distinct(Description, .keep_all = TRUE)

col_rna <- data.frame(colData(sce_rna))

# left_join
col_rna <- left_join(col_rna, description_data[,c("Description", "Tcell_density_score_image", "cyotoxic_density_image")])

# add to sce (attention: cytotoxic density is calculated on protein data set!)
sce_rna$Tcell_density_score_image <- col_rna$Tcell_density_score_image
sce_rna$cyotoxic_density_image <- col_rna$density

Save updated SCE

saveRDS(sce_prot,file = "data/data_for_analysis/sce_protein.rds")
saveRDS(sce_rna,file = "data/data_for_analysis/sce_RNA.rds")

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS

Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] forcats_0.5.1               stringr_1.4.0              
 [3] purrr_0.3.4                 readr_2.1.2                
 [5] tidyr_1.2.0                 tibble_3.1.6               
 [7] tidyverse_1.3.1             pheatmap_1.0.12            
 [9] ggridges_0.5.3              cowplot_1.1.1              
[11] reshape2_1.4.4              CATALYST_1.18.1            
[13] igraph_1.2.11               viridis_0.6.2              
[15] viridisLite_0.4.0           scater_1.22.0              
[17] scuttle_1.4.0               ggplot2_3.3.5              
[19] SingleCellExperiment_1.16.0 SummarizedExperiment_1.24.0
[21] Biobase_2.54.0              GenomicRanges_1.46.1       
[23] GenomeInfoDb_1.30.1         IRanges_2.28.0             
[25] S4Vectors_0.32.3            BiocGenerics_0.40.0        
[27] MatrixGenerics_1.6.0        matrixStats_0.61.0         
[29] LSD_4.1-0                   dplyr_1.0.7                
[31] workflowr_1.7.0            

loaded via a namespace (and not attached):
  [1] utf8_1.2.2                  tidyselect_1.1.1           
  [3] grid_4.1.2                  BiocParallel_1.28.3        
  [5] Rtsne_0.15                  aws.signature_0.6.0        
  [7] flowCore_2.6.0              munsell_0.5.0              
  [9] ScaledMatrix_1.2.0          codetools_0.2-18           
 [11] withr_2.4.3                 colorspace_2.0-2           
 [13] highr_0.9                   knitr_1.37                 
 [15] rstudioapi_0.13             ggsignif_0.6.3             
 [17] git2r_0.29.0                GenomeInfoDbData_1.2.7     
 [19] polyclip_1.10-0             farver_2.1.0               
 [21] flowWorkspace_4.6.0         rprojroot_2.0.2            
 [23] vctrs_0.3.8                 generics_0.1.2             
 [25] TH.data_1.1-0               xfun_0.29                  
 [27] R6_2.5.1                    doParallel_1.0.16          
 [29] ggbeeswarm_0.6.0            clue_0.3-60                
 [31] rsvd_1.0.5                  bitops_1.0-7               
 [33] DelayedArray_0.20.0         assertthat_0.2.1           
 [35] promises_1.2.0.1            scales_1.1.1               
 [37] multcomp_1.4-18             beeswarm_0.4.0             
 [39] gtable_0.3.0                beachmat_2.10.0            
 [41] processx_3.5.2              RProtoBufLib_2.6.0         
 [43] sandwich_3.0-1              rlang_1.0.0                
 [45] GlobalOptions_0.1.2         splines_4.1.2              
 [47] rstatix_0.7.0               hexbin_1.28.2              
 [49] broom_0.7.12                modelr_0.1.8               
 [51] yaml_2.2.2                  abind_1.4-5                
 [53] backports_1.4.1             httpuv_1.6.5               
 [55] RBGL_1.70.0                 tools_4.1.2                
 [57] ellipsis_0.3.2              jquerylib_0.1.4            
 [59] RColorBrewer_1.1-2          Rcpp_1.0.8                 
 [61] plyr_1.8.6                  base64enc_0.1-3            
 [63] sparseMatrixStats_1.6.0     zlibbioc_1.40.0            
 [65] RCurl_1.98-1.5              ps_1.6.0                   
 [67] FlowSOM_2.2.0               ggpubr_0.4.0               
 [69] GetoptLong_1.0.5            zoo_1.8-9                  
 [71] haven_2.4.3                 ggrepel_0.9.1              
 [73] cluster_2.1.2               colorRamps_2.3             
 [75] fs_1.5.2                    magrittr_2.0.2             
 [77] ncdfFlow_2.40.0             data.table_1.14.2          
 [79] scattermore_0.7             circlize_0.4.13            
 [81] reprex_2.0.1                mvtnorm_1.1-3              
 [83] whisker_0.4                 ggnewscale_0.4.5           
 [85] hms_1.1.1                   evaluate_0.14              
 [87] XML_3.99-0.8                jpeg_0.1-9                 
 [89] readxl_1.3.1                gridExtra_2.3              
 [91] shape_1.4.6                 ggcyto_1.22.0              
 [93] compiler_4.1.2              crayon_1.4.2               
 [95] ggpointdensity_0.1.0        htmltools_0.5.2            
 [97] tzdb_0.2.0                  later_1.3.0                
 [99] RcppParallel_5.1.5          lubridate_1.8.0            
[101] aws.s3_0.3.21               DBI_1.1.2                  
[103] tweenr_1.0.2                dbplyr_2.1.1               
[105] ComplexHeatmap_2.10.0       MASS_7.3-55                
[107] Matrix_1.4-0                car_3.0-12                 
[109] cli_3.1.1                   parallel_4.1.2             
[111] pkgconfig_2.0.3             getPass_0.2-2              
[113] xml2_1.3.3                  foreach_1.5.2              
[115] vipor_0.4.5                 bslib_0.3.1                
[117] XVector_0.34.0              drc_3.0-1                  
[119] rvest_1.0.2                 callr_3.7.0                
[121] digest_0.6.29               ConsensusClusterPlus_1.58.0
[123] graph_1.72.0                cellranger_1.1.0           
[125] rmarkdown_2.11              DelayedMatrixStats_1.16.0  
[127] curl_4.3.2                  gtools_3.9.2               
[129] rjson_0.2.21                lifecycle_1.0.1            
[131] jsonlite_1.7.3              carData_3.0-5              
[133] BiocNeighbors_1.12.0        fansi_1.0.2                
[135] pillar_1.7.0                lattice_0.20-45            
[137] plotrix_3.8-2               fastmap_1.1.0              
[139] httr_1.4.2                  survival_3.2-13            
[141] glue_1.6.1                  png_0.1-7                  
[143] iterators_1.0.13            Rgraphviz_2.38.0           
[145] nnls_1.4                    ggforce_0.3.3              
[147] stringi_1.7.6               sass_0.4.0                 
[149] BiocSingular_1.10.0         CytoML_2.6.0               
[151] latticeExtra_0.6-29         cytolib_2.6.1              
[153] irlba_2.3.5