Last updated: 2022-02-22
Checks: 7 0
Knit directory: MelanomaIMC/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200728)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version d246c15. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rproj.user/
Ignored: Table_S4.csv
Ignored: code/.DS_Store
Ignored: code/._.DS_Store
Ignored: data/.DS_Store
Ignored: data/._.DS_Store
Ignored: data/data_for_analysis/
Ignored: data/full_data/
Unstaged changes:
Modified: .gitignore
Modified: analysis/Supp-Figure_10.rmd
Modified: analysis/_site.yml
Deleted: analysis/license.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Supp-Figure_8.rmd
) and HTML (docs/Supp-Figure_8.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 5418dcd | toobiwankenobi | 2022-02-22 | add remaining pngs and new .htmls |
Rmd | 64e5fde | toobiwankenobi | 2022-02-16 | change order and naming of supp fig files |
Rmd | f9a3a83 | toobiwankenobi | 2022-02-08 | clean repo for release |
Rmd | b20b6fb | toobiwankenobi | 2022-02-02 | update code for Supp Figures |
This script generates plots for Supplementary Figure 8.
sapply(list.files("code/helper_functions", full.names = TRUE), source)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
code/helper_functions/calculateSummary.R
value ?
visible FALSE
code/helper_functions/censor_dat.R
value ?
visible FALSE
code/helper_functions/detect_mRNA_expression.R
value ?
visible FALSE
code/helper_functions/DistanceToClusterCenter.R
value ?
visible FALSE
code/helper_functions/findMilieu.R code/helper_functions/findPatch.R
value ? ?
visible FALSE FALSE
code/helper_functions/getInfoFromString.R
value ?
visible FALSE
code/helper_functions/getSpotnumber.R
value ?
visible FALSE
code/helper_functions/plotCellCounts.R
value ?
visible FALSE
code/helper_functions/plotCellFractions.R
value ?
visible FALSE
code/helper_functions/plotDist.R code/helper_functions/read_Data.R
value ? ?
visible FALSE FALSE
code/helper_functions/scatter_function.R
value ?
visible FALSE
code/helper_functions/sceChecks.R
value ?
visible FALSE
code/helper_functions/validityChecks.R
value ?
visible FALSE
library(data.table)
Attaching package: 'data.table'
The following objects are masked from 'package:dplyr':
between, first, last
library(ggplot2)
library(broom)
library(dplyr)
library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
✓ tibble 3.1.6 ✓ purrr 0.3.4
✓ tidyr 1.2.0 ✓ stringr 1.4.0
✓ readr 2.1.2 ✓ forcats 0.5.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
x data.table::between() masks dplyr::between()
x dplyr::filter() masks stats::filter()
x data.table::first() masks dplyr::first()
x dplyr::lag() masks stats::lag()
x data.table::last() masks dplyr::last()
x purrr::transpose() masks data.table::transpose()
library(cowplot)
library(ggbeeswarm)
library(gridExtra)
Attaching package: 'gridExtra'
The following object is masked from 'package:dplyr':
combine
library(SingleCellExperiment)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats
Attaching package: 'matrixStats'
The following object is masked from 'package:dplyr':
count
Attaching package: 'MatrixGenerics'
The following objects are masked from 'package:matrixStats':
colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
colWeightedMeans, colWeightedMedians, colWeightedSds,
colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
rowWeightedSds, rowWeightedVars
Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following object is masked from 'package:gridExtra':
combine
The following objects are masked from 'package:dplyr':
combine, intersect, setdiff, union
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
anyDuplicated, append, as.data.frame, basename, cbind, colnames,
dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
union, unique, unsplit, which.max, which.min
Loading required package: S4Vectors
Attaching package: 'S4Vectors'
The following object is masked from 'package:tidyr':
expand
The following objects are masked from 'package:data.table':
first, second
The following objects are masked from 'package:dplyr':
first, rename
The following objects are masked from 'package:base':
expand.grid, I, unname
Loading required package: IRanges
Attaching package: 'IRanges'
The following object is masked from 'package:purrr':
reduce
The following object is masked from 'package:data.table':
shift
The following objects are masked from 'package:dplyr':
collapse, desc, slice
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
rowMedians
The following objects are masked from 'package:matrixStats':
anyMissing, rowMedians
library(scater)
Loading required package: scuttle
library(reshape2)
Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':
smiths
The following objects are masked from 'package:data.table':
dcast, melt
library(circlize)
========================================
circlize version 0.4.13
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/
If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
in R. Bioinformatics 2014.
This message can be suppressed by:
suppressPackageStartupMessages(library(circlize))
========================================
library(rstatix)
Attaching package: 'rstatix'
The following object is masked from 'package:IRanges':
desc
The following object is masked from 'package:stats':
filter
library(corrplot)
corrplot 0.92 loaded
library(ggpubr)
Attaching package: 'ggpubr'
The following object is masked from 'package:cowplot':
get_legend
# SCE object
sce_rna = readRDS(file = "data/data_for_analysis/sce_RNA.rds")
sce_rna <- sce_rna[,sce_rna$Location != "CTRL"]
targets <- metadata(sce_rna)$chemokines_morethan600_withcontrol
sce_rna$MM_location <- ifelse(sce_rna$MM_location %in% c("skin", "skin_undefine"), "skin_undefined", sce_rna$MM_location)
groups <- data.frame(colData(sce_rna)) %>%
distinct(ImageNumber, .keep_all = T) %>%
group_by(MM_location) %>%
distinct(PatientID, .keep_all = T) %>%
summarise(n=n()) %>%
filter(n>=10) %>%
arrange(-n)
fractions_per_image <- data.frame(colData(sce_rna)) %>%
group_by(ImageNumber, MM_location, expressor, celltype) %>%
summarise(n = n()) %>%
group_by(ImageNumber) %>%
mutate(fraction_per_image = n / sum(n)) %>%
group_by(ImageNumber, expressor) %>%
mutate(group_fraction = sum(fraction_per_image)) %>%
ungroup() %>%
filter(expressor %in% targets & MM_location %in% groups$MM_location)
`summarise()` has grouped output by 'ImageNumber', 'MM_location', 'expressor'.
You can override using the `.groups` argument.
# fraction of expressor cells per image
fraction_expressor_per_image <- fractions_per_image %>%
distinct(ImageNumber, MM_location, expressor, .keep_all = T) %>%
reshape2::dcast(ImageNumber + MM_location ~ expressor, value.var = "group_fraction", fill = 0) %>%
reshape2::melt(id.vars = c("ImageNumber", "MM_location"), variable.name = "expressor",
value.name = "fraction_per_image")
# fraction of celltype expressing a certain combi per image
celltype_fractions <- fractions_per_image %>%
distinct(ImageNumber, celltype, expressor, .keep_all = T) %>%
reshape2::dcast(ImageNumber + MM_location + expressor ~ celltype, value.var = "fraction_per_image", fill = 0) %>%
reshape2::melt(id.vars = c("ImageNumber", "MM_location", "expressor"),
variable.name = "celltype", value.name = "fraction_per_image") %>%
reshape2::dcast(ImageNumber + MM_location + celltype ~ expressor, value.var = "fraction_per_image", fill = 0) %>%
reshape2::melt(id.vars = c("ImageNumber", "MM_location", "celltype"),
variable.name = "expressor", value.name = "fraction_per_image") %>%
group_by(MM_location, expressor, celltype) %>%
summarise(sum_fraction = sum(fraction_per_image)) %>% # sum-up fractions over all images
group_by(MM_location, expressor) %>%
mutate(proportions = sum_fraction / sum(sum_fraction)) # calculate proportions for each expressor
`summarise()` has grouped output by 'MM_location', 'expressor'. You can override
using the `.groups` argument.
# calculate signif of expressor-fractions per MM_location
fraction_expressor_per_image %>%
group_by(expressor) %>%
wilcox_test(fraction_per_image ~ MM_location) %>%
adjust_pvalue(method = "BH") %>%
add_significance("p.adj",cutpoints = c(0, 1e-04, 0.001, 0.01, 0.1, 1)) %>%
arrange(p.adj)
# A tibble: 14 × 10
expressor .y. group1 group2 n1 n2 statistic p p.adj
<fct> <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl>
1 CCL19 fraction_per… LN skin_… 49 52 1739 0.00129 0.0181
2 CXCL13 fraction_per… LN skin_… 49 52 1634. 0.0138 0.0966
3 CCL22 fraction_per… LN skin_… 49 52 1557 0.0548 0.145
4 CXCL12_CCL2 fraction_per… LN skin_… 49 52 1535 0.062 0.145
5 CXCL8 fraction_per… LN skin_… 49 52 1580 0.0378 0.145
6 CXCL9_CCL19 fraction_per… LN skin_… 49 52 1523 0.0487 0.145
7 CCL18 fraction_per… LN skin_… 49 52 1501 0.124 0.217
8 CXCL10_CCL2 fraction_per… LN skin_… 49 52 1054 0.121 0.217
9 CXCL10 fraction_per… LN skin_… 49 52 1095 0.225 0.315
10 CXCL12 fraction_per… LN skin_… 49 52 1457 0.215 0.315
11 CCL4 fraction_per… LN skin_… 49 52 1382 0.465 0.592
12 CCL2 fraction_per… LN skin_… 49 52 1326. 0.724 0.845
13 CXCL10_CXCL9 fraction_per… LN skin_… 49 52 1270 0.981 0.981
14 CXCL9 fraction_per… LN skin_… 49 52 1288 0.926 0.981
# … with 1 more variable: p.adj.signif <chr>
plot_list <- list()
for(i in groups$MM_location) {
a <- fraction_expressor_per_image %>%
filter(MM_location == i) %>%
group_by(ImageNumber, expressor) %>%
ggplot(., aes(y=as.factor(expressor), x=fraction_per_image)) +
geom_boxplot() +
geom_point(alpha=0.2) +
theme_bw() +
theme(axis.title.y = element_blank(),
axis.text.y = element_text(hjust=0.5)) +
xlab("Cell Fraction per Image") +
coord_cartesian(xlim = c(0,0.05))
b <- celltype_fractions %>%
filter(MM_location == i) %>%
ggplot(., aes(y=expressor, x=-proportions, fill=celltype)) +
geom_bar(stat = "identity") +
theme_bw() +
theme(axis.text.y = element_blank(),
axis.title.y = element_blank()) +
guides(fill=guide_legend(title = "Cell Type",nrow=2,byrow=TRUE)) +
xlab("Producing Cell Types") +
scale_fill_manual(values = unname(metadata(sce_rna)$colour_vectors$celltype),
breaks = names(metadata(sce_rna)$colour_vectors$celltype),
labels = names(metadata(sce_rna)$colour_vectors$celltype)) +
scale_x_continuous(breaks=c(-1.00,-0.75,-0.5, -0.25, 0.00),
labels=c("100%", "75%", "50%", "25%", "0%"))
leg <- get_legend(b)
grid.arrange(b+theme(legend.position = "none"),a,nrow=1,
widths = c(.75,1),
top = i)
}
Version | Author | Date |
---|---|---|
ff22877 | toobiwankenobi | 2022-02-22 |
Version | Author | Date |
---|---|---|
ff22877 | toobiwankenobi | 2022-02-22 |
grid.arrange(leg)
Version | Author | Date |
---|---|---|
ff22877 | toobiwankenobi | 2022-02-22 |
# top abundant chemokines
cur_rna <- data.frame(colData(sce_rna))
# sum
rna_sum <- cur_rna %>%
group_by(Description, expressor) %>%
summarise(n = n()) %>%
reshape2::dcast(Description ~ expressor, value.var = "n", fill = 0)
`summarise()` has grouped output by 'Description'. You can override using the
`.groups` argument.
# only keep highly abundant chemokines
rna_sum <- rna_sum[,colnames(rna_sum) %in% targets]
# correlation
cor <- cor(rna_sum, rna_sum, method = "pearson")
corrplot(cor,
order = "FPC",
addCoef.col = "black",
method = "circle",
tl.col="black",
tl.cex = 1.5)
Version | Author | Date |
---|---|---|
ff22877 | toobiwankenobi | 2022-02-22 |
sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] ggpubr_0.4.0 corrplot_0.92
[3] rstatix_0.7.0 circlize_0.4.13
[5] reshape2_1.4.4 scater_1.22.0
[7] scuttle_1.4.0 SingleCellExperiment_1.16.0
[9] SummarizedExperiment_1.24.0 Biobase_2.54.0
[11] GenomicRanges_1.46.1 GenomeInfoDb_1.30.1
[13] IRanges_2.28.0 S4Vectors_0.32.3
[15] BiocGenerics_0.40.0 MatrixGenerics_1.6.0
[17] matrixStats_0.61.0 gridExtra_2.3
[19] ggbeeswarm_0.6.0 cowplot_1.1.1
[21] forcats_0.5.1 stringr_1.4.0
[23] purrr_0.3.4 readr_2.1.2
[25] tidyr_1.2.0 tibble_3.1.6
[27] tidyverse_1.3.1 broom_0.7.12
[29] ggplot2_3.3.5 data.table_1.14.2
[31] dplyr_1.0.7 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] colorspace_2.0-2 ggsignif_0.6.3
[3] ellipsis_0.3.2 rprojroot_2.0.2
[5] XVector_0.34.0 GlobalOptions_0.1.2
[7] BiocNeighbors_1.12.0 fs_1.5.2
[9] rstudioapi_0.13 farver_2.1.0
[11] ggrepel_0.9.1 fansi_1.0.2
[13] lubridate_1.8.0 xml2_1.3.3
[15] sparseMatrixStats_1.6.0 knitr_1.37
[17] jsonlite_1.7.3 dbplyr_2.1.1
[19] compiler_4.1.2 httr_1.4.2
[21] backports_1.4.1 assertthat_0.2.1
[23] Matrix_1.4-0 fastmap_1.1.0
[25] cli_3.1.1 later_1.3.0
[27] BiocSingular_1.10.0 htmltools_0.5.2
[29] tools_4.1.2 rsvd_1.0.5
[31] gtable_0.3.0 glue_1.6.1
[33] GenomeInfoDbData_1.2.7 Rcpp_1.0.8
[35] carData_3.0-5 cellranger_1.1.0
[37] jquerylib_0.1.4 vctrs_0.3.8
[39] DelayedMatrixStats_1.16.0 xfun_0.29
[41] ps_1.6.0 beachmat_2.10.0
[43] rvest_1.0.2 lifecycle_1.0.1
[45] irlba_2.3.5 getPass_0.2-2
[47] zlibbioc_1.40.0 scales_1.1.1
[49] hms_1.1.1 promises_1.2.0.1
[51] parallel_4.1.2 yaml_2.2.2
[53] sass_0.4.0 stringi_1.7.6
[55] highr_0.9 ScaledMatrix_1.2.0
[57] BiocParallel_1.28.3 shape_1.4.6
[59] rlang_1.0.0 pkgconfig_2.0.3
[61] bitops_1.0-7 evaluate_0.14
[63] lattice_0.20-45 labeling_0.4.2
[65] processx_3.5.2 tidyselect_1.1.1
[67] plyr_1.8.6 magrittr_2.0.2
[69] R6_2.5.1 generics_0.1.2
[71] DelayedArray_0.20.0 DBI_1.1.2
[73] pillar_1.7.0 haven_2.4.3
[75] whisker_0.4 withr_2.4.3
[77] abind_1.4-5 RCurl_1.98-1.5
[79] car_3.0-12 modelr_0.1.8
[81] crayon_1.4.2 utf8_1.2.2
[83] tzdb_0.2.0 rmarkdown_2.11
[85] viridis_0.6.2 grid_4.1.2
[87] readxl_1.3.1 callr_3.7.0
[89] git2r_0.29.0 reprex_2.0.1
[91] digest_0.6.29 httpuv_1.6.5
[93] munsell_0.5.0 beeswarm_0.4.0
[95] viridisLite_0.4.0 vipor_0.4.5
[97] bslib_0.3.1