Last updated: 2022-02-22

Checks: 7 0

Knit directory: MelanomaIMC/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200728) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d246c15. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rproj.user/
    Ignored:    Table_S4.csv
    Ignored:    code/.DS_Store
    Ignored:    code/._.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/._.DS_Store
    Ignored:    data/data_for_analysis/
    Ignored:    data/full_data/

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/Supp-Figure_10.rmd
    Modified:   analysis/_site.yml
    Deleted:    analysis/license.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Supp-Figure_13.rmd) and HTML (docs/Supp-Figure_13.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 1affd7b toobiwankenobi 2022-02-22 update .html
Rmd 64e5fde toobiwankenobi 2022-02-16 change order and naming of supp fig files
Rmd 588dbb1 toobiwankenobi 2022-02-06 Figure Order
Rmd b20b6fb toobiwankenobi 2022-02-02 update code for Supp Figures
Rmd d6a945a toobiwankenobi 2021-12-06 updated figures
Rmd 3da15db toobiwankenobi 2021-11-24 changes for revision

Introduction

This script generates plots for Supplementary Figure 13.

Preparations

knitr::opts_chunk$set(echo = TRUE, message= FALSE)
knitr::opts_knit$set(root.dir = rprojroot::find_rstudio_root_file())

Load libraries

sapply(list.files("code/helper_functions", full.names = TRUE), source)
        code/helper_functions/calculateSummary.R
value   ?                                       
visible FALSE                                   
        code/helper_functions/censor_dat.R
value   ?                                 
visible FALSE                             
        code/helper_functions/detect_mRNA_expression.R
value   ?                                             
visible FALSE                                         
        code/helper_functions/DistanceToClusterCenter.R
value   ?                                              
visible FALSE                                          
        code/helper_functions/findMilieu.R code/helper_functions/findPatch.R
value   ?                                  ?                                
visible FALSE                              FALSE                            
        code/helper_functions/getInfoFromString.R
value   ?                                        
visible FALSE                                    
        code/helper_functions/getSpotnumber.R
value   ?                                    
visible FALSE                                
        code/helper_functions/plotCellCounts.R
value   ?                                     
visible FALSE                                 
        code/helper_functions/plotCellFractions.R
value   ?                                        
visible FALSE                                    
        code/helper_functions/plotDist.R code/helper_functions/read_Data.R
value   ?                                ?                                
visible FALSE                            FALSE                            
        code/helper_functions/scatter_function.R
value   ?                                       
visible FALSE                                   
        code/helper_functions/sceChecks.R
value   ?                                
visible FALSE                            
        code/helper_functions/validityChecks.R
value   ?                                     
visible FALSE                                 
library(ggridges)
library(SingleCellExperiment)
library(ggplot2)
library(dplyr)
library(tidyr)
library(ggbeeswarm)
library(ggrastr)
library(Hmisc)
library(data.table)
library(ggpubr)
library(corrplot)
library(gridExtra)
library(scater)
library(dittoSeq)
library(ComplexHeatmap)
library(colorRamps)
library(cowplot)
library(stringr)
library(circlize)

Load data

sce_rna <- readRDS(file = "data/data_for_analysis/sce_RNA.rds")
sce_prot <- readRDS(file = "data/data_for_analysis/sce_protein.rds")

# remove LN margin samples and control samples
sce_rna$PunchLocation <- paste(sce_rna$MM_location, sce_rna$Location, sep = "_")
sce_prot$PunchLocation <- paste(sce_prot$MM_location, sce_prot$Location, sep = "_")
sce_rna <- sce_rna[,sce_rna$PunchLocation != "LN_M" & sce_rna$Location != "CTRL"]
sce_prot <- sce_prot[,sce_prot$PunchLocation != "LN_M" & sce_prot$Location != "CTRL"]

# image
image_mat_prot <- read.csv("data/data_for_analysis/protein/Image.csv")
image_mat_rna <- read.csv("data/data_for_analysis/RNA/Image.csv")

Prepare image size data

im_size_prot <- as.data.frame(cbind(image_mat_prot$Metadata_Description, (image_mat_prot$Height_cellmask * image_mat_prot$Width_cellmask)/1000000))
names(im_size_prot) <- c("Description", "mm2_prot")
im_size_prot$mm2_prot <- as.numeric(im_size_prot$mm2_prot)
im_size_prot[im_size_prot$Description %in% c("G1", "G1 - split"), ]$mm2_prot <- mean(im_size_prot[im_size_prot$Description %in% c("G1", "G1 - split"), ]$mm2_prot)
im_size_prot <- im_size_prot[im_size_prot != "G1 - split",]
im_size_prot <- im_size_prot[1:166,]

Prepare image size data

im_size_rna <- as.data.frame(cbind(image_mat_rna$Metadata_Description, (image_mat_rna$Height_cellmask * image_mat_rna$Width_cellmask)/1000000))
names(im_size_rna) <- c("Description", "mm2_rna")
im_size_rna$mm2_rna <- as.numeric(im_size_rna$mm2_rna)
im_size_rna <- im_size_rna[1:166,]

Supp Figure 13A/13B

Diffusion Map for CXCL13 Producing Cells

# loop through all patches 
for(i in c("cxcl13only_clust")){
  # subset sce object to only contain community cells
  sce_sub <- sce_rna[,colData(sce_rna)[,i] > 0]

  assay(sce_sub, "scaled_asinh") <- t(scale(t(assay(sce_sub, "asinh"))))
  
  # create UAMP
  set.seed(12345)
  sce_sub <- runDiffusionMap(sce_sub, 
                             exprs_values = "asinh", 
                             subset_row = rowData(sce_sub)$good_marker,
                             ncomponents = 2)
  
  # add patch size to sce
  cur_df <- data.frame(colData(sce_sub))

  clust_size <- cur_df %>%
    group_by(cur_df[,i]) %>%
    summarise(clust_size = n())
   
  names(clust_size)[1] <- i 
  
  cur_df <- left_join(cur_df, clust_size)
  sce_sub$clust_size = as.numeric(log10(cur_df$clust_size))
  
   # col by clust size
  a <- dittoDimPlot(sce_sub,
                    reduction.use = "DiffusionMap",
                    var = "clust_size", 
                    size = 1,
                    legend.show = TRUE,
                    opacity = 1,
                    max.color = "red", min.color = "blue",
                    main = NULL,
                    legend.title = "Patch Size (log10)") +
    xlim(quantile(reducedDim(sce_sub, "DiffusionMap")[,1], 0.05)[[1]],
         quantile(reducedDim(sce_sub, "DiffusionMap")[,1], 0.95)[[1]]) +
    ylim(quantile(reducedDim(sce_sub, "DiffusionMap")[,2], 0.05)[[1]],
         quantile(reducedDim(sce_sub, "DiffusionMap")[,2], 0.95)[[1]]) +
    theme_bw() +
    theme(text = element_text(size=18))

  # col by celltype
  b <- dittoDimPlot(sce_sub, 
             reduction.use = "DiffusionMap", 
             var = "celltype", 
             opacity = 1,
             color.panel = metadata(sce_sub)$colour_vector$celltype,
             size = 1,
             legend.show = TRUE,
                    main = NULL,
             legend.title = "Cell Type") +
    theme_bw() +
    xlim(quantile(reducedDim(sce_sub, "DiffusionMap")[,1], 0.05)[[1]],
         quantile(reducedDim(sce_sub, "DiffusionMap")[,1], 0.95)[[1]]) +
    ylim(quantile(reducedDim(sce_sub, "DiffusionMap")[,2], 0.05)[[1]],
         quantile(reducedDim(sce_sub, "DiffusionMap")[,2], 0.95)[[1]]) +
    theme(text = element_text(size=18)) + 
    guides(colour = guide_legend(override.aes = list(alpha = 1, size=3))) 
  
  leg_a <- cowplot::get_legend(a)
  leg_b <- cowplot::get_legend(b)

}
Warning: 'runDiffusionMap' is deprecated.
See help("Deprecated")
Warning: 'calculateDiffusionMap' is deprecated.
See help("Deprecated")
Warning: Removed 1063 rows containing missing values (geom_point).
Removed 1063 rows containing missing values (geom_point).
sce_sub <- sce_rna[,colData(sce_rna)[,"cxcl13only_clust"] > 0]

# add patch size to sce
cur_df <- data.frame(colData(sce_sub))

clust_size <- cur_df %>%
  group_by(cxcl13only_clust) %>%
  summarise(clust_size = n())
   
names(clust_size)[1] <- "cxcl13only_clust"
  
cur_df <- left_join(cur_df, clust_size)

sce_sub$clust_size = as.numeric(log10(cur_df$clust_size))

# add clust size correlation plot 
clust_size <- data.frame(colData(sce_sub)) %>%
  distinct(Description, cxcl13only_clust, .keep_all = T) %>%
  group_by(Description) %>%
  summarise(maxClustSize = max(clust_size))

Bcell_patch <- data.frame(colData(sce_prot)) %>%
  group_by(Description, bcell_patch) %>%
  summarise(n=n()) %>%
  mutate(n = ifelse(bcell_patch == 0, 0, n)) %>%
  mutate(maxPatchSize = log10(max(n+1))) %>%
  distinct(Description, .keep_all = T) %>% 
  dplyr::select(Description, maxPatchSize)

Bcell_patch <- left_join(Bcell_patch, clust_size)
Bcell_patch[is.na(Bcell_patch$maxClustSize), ]$maxClustSize <- 0

Bcell <- data.frame(colData(sce_prot)) %>%
  group_by(Description, celltype) %>%
  summarise(n=n()) %>%
  mutate(fraction = n / sum(n)) %>%
  reshape2::dcast(Description ~ celltype, value.var = "fraction", fill = 0) %>%
  dplyr::select(Description, `B cell`)

Bcell <- left_join(Bcell, clust_size)
Bcell[is.na(Bcell$maxClustSize), ]$maxClustSize <- 0

# only when not 0 - CHANGE?
c <- ggplot(Bcell_patch[rowSums(Bcell_patch[,-1]) > 0,], aes(x = maxClustSize, y = maxPatchSize, label=Description)) + 
  geom_point() +
  geom_smooth(method="lm") + 
  stat_cor(method = "pearson",
           aes(label = paste0("atop(", ..r.label..,  ",", ..p.label.. ,")")),
           size = 6, cor.coef.name = "R", label.sep="\n", label.y = 0.5, label.x = 2) + 
  ylab("Max Size of B cell\nPatches (log10)") +
  xlab("Max Size of CXCL13 Patches (log10)") +
  theme_bw() + 
  theme(text = element_text(size=18))

d <- ggplot(Bcell, aes(x = maxClustSize, y = `B cell`, label=Description)) + 
  geom_point() +
  geom_smooth(method="lm") + 
  stat_cor(method = "pearson",
           aes(label = paste0("atop(", ..r.label..,  ",", ..p.label.. ,")")),
           size = 6, cor.coef.name = "R", label.sep="\n", label.y = 0.05, label.x = 2) + 
  ylab("B Cell Fraction") +
  xlab("Max Size of CXCL13 Patches (log10)") +
  theme_bw() + 
  theme(text = element_text(size=18))

plot_grid(grid.arrange(a + theme(legend.position = "none"), 
                       b + theme(legend.position = "none"),
                       ncol = 2),
          grid.arrange(d,c, ncol = 2),
          ncol = 1, 
          rel_heights = c(0.65,0.35))
Warning: Removed 1063 rows containing missing values (geom_point).
Removed 1063 rows containing missing values (geom_point).

Version Author Date
235386f toobiwankenobi 2022-02-22

Version Author Date
235386f toobiwankenobi 2022-02-22

Version Author Date
235386f toobiwankenobi 2022-02-22

Legend for Plot

grid.arrange(leg_a)

Version Author Date
235386f toobiwankenobi 2022-02-22
grid.arrange(leg_b)

Version Author Date
235386f toobiwankenobi 2022-02-22

Supp Figure 13C

Prepare data

sce_rna$CD8pos_CXCL13 <- 0
sce_rna[,sce_rna$celltype %in% c("CD8+ T cell") & sce_rna$CXCL13 == 1]$CD8pos_CXCL13 <- 1

sce_rna$CD8neg_CXCL13 <- 0
sce_rna[,sce_rna$celltype %in% c("CD8- T cell") & sce_rna$CXCL13 == 1]$CD8neg_CXCL13 <- 1

Density CD8+CXCL13+ and density B cells per Patch score

perc_cd8_cxcl13 <- as.data.frame(colData(sce_rna)) %>%
  group_by(Description, CD8pos_CXCL13) %>%
  summarise(n_cd8pos=n()) %>%
  ungroup() %>%
  complete(Description, CD8pos_CXCL13, fill=list(n_cd8pos=0)) %>%
  filter(CD8pos_CXCL13 == 1)

perc_cd20 <- as.data.frame(colData(sce_prot)) %>%
  group_by(Description, celltype) %>%
  summarise(n_cd20=n()) %>%
  ungroup() %>%
  complete(Description, celltype, fill=list(n_cd20=0)) %>%
  filter(celltype == "B cell")

info <- as.data.frame(colData(sce_prot)) %>%
  distinct(Description, .keep_all = T) %>%
  select(Description, bcell_patch_score)

perc_cd20 <- left_join(info, perc_cd20)
data <- left_join(perc_cd20, perc_cd8_cxcl13)

data_cd8pos <- left_join(data, im_size_prot)
data_cd8pos <- left_join(data_cd8pos, im_size_rna)
data_cd8pos$n_cd20 <- data_cd8pos$n_cd20 / data_cd8pos$mm2_prot
data_cd8pos$n_cd8pos <- data_cd8pos$n_cd8pos / data_cd8pos$mm2_rna

Density CD8-CXCL13+ and density B cells per Patch score

perc_cd4_cxcl13 <- as.data.frame(colData(sce_rna)) %>%
  group_by(Description, CD8neg_CXCL13) %>%
  summarise(n_cd8neg=n()) %>%
  ungroup() %>%
  complete(Description, CD8neg_CXCL13, fill=list(n_cd8neg=0)) %>%
  filter(CD8neg_CXCL13 == 1)

perc_cd20 <- as.data.frame(colData(sce_prot)) %>%
  group_by(Description, celltype) %>%
  summarise(n_cd20=n()) %>%
  ungroup() %>%
  complete(Description, celltype, fill=list(n_cd20=0)) %>%
  filter(celltype == "B cell")

info <- as.data.frame(colData(sce_prot)) %>%
  distinct(Description, .keep_all = T) %>%
  select(Description, bcell_patch_score)

perc_cd20 <- left_join(info, perc_cd20)
data <- left_join(perc_cd20, perc_cd4_cxcl13)

data_cd8neg <- left_join(data, im_size_prot)
data_cd8neg <- left_join(data_cd8neg, im_size_rna)
data_cd8neg$n_cd20 <- data_cd8neg$n_cd20 / data_cd8neg$mm2_prot
data_cd8neg$n_cd8neg <- data_cd8neg$n_cd8neg / data_cd8neg$mm2_rna

Plot Density CXCL13+ T cells and density B cells per Patch score

data_complete <- left_join(data_cd8neg, data_cd8pos[,c("Description","n_cd8pos")])

# remove images with follicles
data_complete <- data_complete[data_complete$bcell_patch_score != "B cell Follicles",]

a <- ggplot(data_complete, aes(x=n_cd8neg, y=n_cd20)) +
  geom_point() +
  geom_smooth(method="lm") +
  stat_cor(method = "pearson",
           aes(label = paste(..r.label.., ..p.label.., sep = "~`,`~")),
           size = 4, cor.coef.name = "R", label.sep="\n", label.y.npc = "top", label.x.npc = "left") +
  xlab("CXCL13+CD8- T cell / mm2") +
  ylab("B cells / mm2") +
  theme_bw() +
  theme(text=element_text(size=15))

b <- ggplot(data_complete, aes(x=n_cd8pos, y=n_cd20)) +
  geom_point() +
  geom_smooth(method="lm") +
  stat_cor(method = "pearson",
           aes(label = paste(..r.label.., ..p.label.., sep = "~`,`~")),
           size = 4, cor.coef.name = "R", label.sep="\n", label.y.npc = "top", label.x.npc = "left") +
  xlab("CXCL13+CD8+ T cell / mm2") +
  ylab("B cells / mm2") +
  theme_bw() +
  theme(text=element_text(size=15))

grid.arrange(a,b, ncol=2)

Version Author Date
235386f toobiwankenobi 2022-02-22

Supp Figure 13D

Chemokine Correlation with Tcf7+CD8+

targets <- metadata(sce_rna)$chemokines_morethan600_withcontrol

# top abundant chemokines
cur_rna <- data.frame(colData(sce_rna)) %>%
  filter(Location != "CTRL")

# protein data
cur_prot <- data.frame(colData(sce_prot)) %>%
  filter(Location != "CTRL")

# sum
rna_sum <- cur_rna %>%
  group_by(Description) %>%
  mutate(total_cells=n()) %>%
  ungroup() %>%
  group_by(Description, total_cells, expressor) %>%
  summarise(n=n()) %>%
  mutate(fraction=n/total_cells) %>%
  reshape2::dcast(Description ~ expressor, value.var = "fraction", fill = 0) 

# only keep highly abundant chemokines
rna_sum <- rna_sum[,c("Description", targets)]

prot_sum <- cur_prot %>%
  mutate(celltype2 = ifelse(celltype %in% c("CD4+ T cell", "CD8+ T cell"), 
                            paste(paste(celltype, TCF7, sep="_"), PD1, sep = "_"), celltype)) %>%
  group_by(Description, celltype2) %>%
  summarise(n = n()) %>%
  group_by(Description) %>%
  mutate(fraction = n/sum(n)) %>%
  #filter(!celltype2 %in% c("CD4+ T cell_TCF7+_PD1+", "CD4+ T cell_TCF7-_PD1+", "CD8+ T cell_TCF7+_PD1+")) %>%
  reshape2::dcast(Description ~ celltype2, value.var = "fraction", fill = 0) %>%
  select(Description,contains(c("CD8+ T cell", "CD4+ T cell")))

# equal images
all(rna_sum$Description == prot_sum$Description)
[1] TRUE
# correlation
cor <- cor(rna_sum[,-1], prot_sum[,-1], method = "pearson")

ha <- t(str_split_fixed(colnames(cor), "_", n=3))

dat_sum <- cur_prot %>%
  filter(celltype %in% c("CD4+ T cell", "CD8+ T cell")) %>%
  mutate(celltype2 = ifelse(celltype %in% c("CD4+ T cell", "CD8+ T cell"), 
                            paste(paste(celltype, TCF7, sep="_"), PD1, sep = "_"), celltype)) %>%
  group_by(celltype2) %>%
  summarise(n = n())


ha1 <- HeatmapAnnotation("TCF7_PD1" = anno_text(paste(ha[2,], ha[3,], sep = " ")),
                         "Cell Type" = ha[1,],
                         "Number of Cells" = anno_barplot(dat_sum$n,
                                                         height = unit(2,"cm"),
                                                         axis_param = list(gp = gpar(fontsize=14))),
                        "Numbers" = anno_text(dat_sum$n, 
                                              which = "column", 
                                              rot = 0,
                                              height = unit(0.5,"cm"),
                                              just = "center", 
                                              location = 0.5),
                         col = list("Cell Type" = metadata(sce_prot)$colour_vectors$celltype[c("CD4+ T cell", "CD8+ T cell")]),
                         show_legend = FALSE)

h <- Heatmap(cor,
        name = "Pearson\nCorrelation",
        cluster_rows = FALSE,
        cluster_columns = FALSE,
        show_column_names = FALSE,
        show_row_names = TRUE,
        cell_fun = function(j, i, x, y, width, height, fill) {
          grid.text(sprintf("%.2f", cor[i, j]), x, y, gp = gpar(fontsize = 15, col = "black"))
          },
        col = colorRamp2(c(-1, 0, 1), c("red", "white", "blue")),
        row_title = "Expressor",
        row_names_side = "left",
        top_annotation = ha1,
        width = unit(18, "cm"),
        height = unit(10, "cm"),
        show_heatmap_legend = FALSE)

# draw heatmap
draw(h)

Version Author Date
235386f toobiwankenobi 2022-02-22

Legend heatmap

lgd1 = color_mapping_legend(h@matrix_color_mapping, plot = FALSE, legend_direction = "vertical", legend_width=unit(3,"cm"), at = c(-1:1))
lgd2 = color_mapping_legend(ha1@anno_list$`Cell Type`@color_mapping, plot = FALSE, legend_direction = "vertical", nrow = 4)

lgd_list = packLegend(lgd1,lgd2,direction = "vertical", gap = unit(1,"cm"))
draw(lgd_list)

Version Author Date
235386f toobiwankenobi 2022-02-22

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS

Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] circlize_0.4.13             stringr_1.4.0              
 [3] cowplot_1.1.1               colorRamps_2.3             
 [5] ComplexHeatmap_2.10.0       dittoSeq_1.6.0             
 [7] scater_1.22.0               scuttle_1.4.0              
 [9] gridExtra_2.3               corrplot_0.92              
[11] ggpubr_0.4.0                data.table_1.14.2          
[13] Hmisc_4.6-0                 Formula_1.2-4              
[15] survival_3.2-13             lattice_0.20-45            
[17] ggrastr_1.0.1               ggbeeswarm_0.6.0           
[19] tidyr_1.2.0                 ggplot2_3.3.5              
[21] SingleCellExperiment_1.16.0 SummarizedExperiment_1.24.0
[23] Biobase_2.54.0              GenomicRanges_1.46.1       
[25] GenomeInfoDb_1.30.1         IRanges_2.28.0             
[27] S4Vectors_0.32.3            BiocGenerics_0.40.0        
[29] MatrixGenerics_1.6.0        matrixStats_0.61.0         
[31] ggridges_0.5.3              dplyr_1.0.7                
[33] workflowr_1.7.0            

loaded via a namespace (and not attached):
  [1] utf8_1.2.2                tidyselect_1.1.1         
  [3] htmlwidgets_1.5.4         ranger_0.13.1            
  [5] BiocParallel_1.28.3       munsell_0.5.0            
  [7] ScaledMatrix_1.2.0        destiny_3.8.1            
  [9] codetools_0.2-18          withr_2.4.3              
 [11] colorspace_2.0-2          highr_0.9                
 [13] knitr_1.37                rstudioapi_0.13          
 [15] robustbase_0.93-9         ggsignif_0.6.3           
 [17] vcd_1.4-9                 VIM_6.1.1                
 [19] TTR_0.24.3                labeling_0.4.2           
 [21] git2r_0.29.0              GenomeInfoDbData_1.2.7   
 [23] farver_2.1.0              pheatmap_1.0.12          
 [25] rprojroot_2.0.2           vctrs_0.3.8              
 [27] generics_0.1.2            xfun_0.29                
 [29] ggthemes_4.2.4            R6_2.5.1                 
 [31] doParallel_1.0.16         clue_0.3-60              
 [33] rsvd_1.0.5                RcppEigen_0.3.3.9.1      
 [35] bitops_1.0-7              DelayedArray_0.20.0      
 [37] assertthat_0.2.1          promises_1.2.0.1         
 [39] scales_1.1.1              nnet_7.3-17              
 [41] beeswarm_0.4.0            gtable_0.3.0             
 [43] beachmat_2.10.0           processx_3.5.2           
 [45] rlang_1.0.0               scatterplot3d_0.3-41     
 [47] GlobalOptions_0.1.2       splines_4.1.2            
 [49] rstatix_0.7.0             hexbin_1.28.2            
 [51] broom_0.7.12              checkmate_2.0.0          
 [53] reshape2_1.4.4            yaml_2.2.2               
 [55] abind_1.4-5               backports_1.4.1          
 [57] httpuv_1.6.5              tools_4.1.2              
 [59] ellipsis_0.3.2            jquerylib_0.1.4          
 [61] RColorBrewer_1.1-2        proxy_0.4-26             
 [63] Rcpp_1.0.8                plyr_1.8.6               
 [65] base64enc_0.1-3           sparseMatrixStats_1.6.0  
 [67] zlibbioc_1.40.0           purrr_0.3.4              
 [69] RCurl_1.98-1.5            ps_1.6.0                 
 [71] rpart_4.1.16              GetoptLong_1.0.5         
 [73] viridis_0.6.2             zoo_1.8-9                
 [75] ggrepel_0.9.1             cluster_2.1.2            
 [77] fs_1.5.2                  magrittr_2.0.2           
 [79] magick_2.7.3              RSpectra_0.16-0          
 [81] lmtest_0.9-39             pcaMethods_1.86.0        
 [83] whisker_0.4               evaluate_0.14            
 [85] smoother_1.1              jpeg_0.1-9               
 [87] shape_1.4.6               compiler_4.1.2           
 [89] tibble_3.1.6              crayon_1.4.2             
 [91] htmltools_0.5.2           mgcv_1.8-38              
 [93] later_1.3.0               DBI_1.1.2                
 [95] MASS_7.3-55               boot_1.3-28              
 [97] Matrix_1.4-0              car_3.0-12               
 [99] cli_3.1.1                 parallel_4.1.2           
[101] pkgconfig_2.0.3           getPass_0.2-2            
[103] foreign_0.8-82            laeken_0.5.2             
[105] sp_1.4-6                  foreach_1.5.2            
[107] vipor_0.4.5               bslib_0.3.1              
[109] XVector_0.34.0            callr_3.7.0              
[111] digest_0.6.29             rmarkdown_2.11           
[113] htmlTable_2.4.0           DelayedMatrixStats_1.16.0
[115] curl_4.3.2                ggplot.multistats_1.0.0  
[117] rjson_0.2.21              nlme_3.1-155             
[119] lifecycle_1.0.1           jsonlite_1.7.3           
[121] carData_3.0-5             BiocNeighbors_1.12.0     
[123] viridisLite_0.4.0         fansi_1.0.2              
[125] pillar_1.7.0              fastmap_1.1.0            
[127] httr_1.4.2                DEoptimR_1.0-10          
[129] glue_1.6.1                xts_0.12.1               
[131] png_0.1-7                 iterators_1.0.13         
[133] class_7.3-20              stringi_1.7.6            
[135] sass_0.4.0                RcppHNSW_0.3.0           
[137] BiocSingular_1.10.0       latticeExtra_0.6-29      
[139] knn.covertree_1.0         irlba_2.3.5              
[141] e1071_1.7-9