Last updated: 2022-02-22
Checks: 7 0
Knit directory: MelanomaIMC/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200728)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version d246c15. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rproj.user/
Ignored: Table_S4.csv
Ignored: code/.DS_Store
Ignored: code/._.DS_Store
Ignored: data/.DS_Store
Ignored: data/._.DS_Store
Ignored: data/data_for_analysis/
Ignored: data/full_data/
Unstaged changes:
Modified: .gitignore
Modified: analysis/Supp-Figure_10.rmd
Modified: analysis/_site.yml
Deleted: analysis/license.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Figure_2.rmd
) and HTML (docs/Figure_2.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 73aa800 | toobiwankenobi | 2022-02-22 | add .html for static website |
Rmd | f9a3a83 | toobiwankenobi | 2022-02-08 | clean repo for release |
Rmd | 588dbb1 | toobiwankenobi | 2022-02-06 | Figure Order |
Rmd | 3da15db | toobiwankenobi | 2021-11-24 | changes for revision |
Rmd | 434eee4 | toobiwankenobi | 2021-09-23 | Figure adaptions and new Supp Figure with gates |
Rmd | c4e2793 | toobiwankenobi | 2021-08-04 | rearrange figure order to match pre-print |
html | 4109ff1 | toobiwankenobi | 2021-07-07 | delete html files and adapt gitignore |
Rmd | 4affda4 | toobiwankenobi | 2021-04-14 | figure adaptations |
html | 4affda4 | toobiwankenobi | 2021-04-14 | figure adaptations |
Rmd | 3203891 | toobiwankenobi | 2021-02-19 | change celltype names |
html | 3203891 | toobiwankenobi | 2021-02-19 | change celltype names |
Rmd | ee1595d | toobiwankenobi | 2021-02-12 | clean repo and adapt files |
html | ee1595d | toobiwankenobi | 2021-02-12 | clean repo and adapt files |
html | 3f5af3f | toobiwankenobi | 2021-02-09 | add .html files |
Rmd | afa7957 | toobiwankenobi | 2021-02-08 | minor changes on figures and figure order |
Rmd | 20a1458 | toobiwankenobi | 2021-02-04 | adapt figure order |
Rmd | f9bb33a | toobiwankenobi | 2021-02-04 | new Figure 5 and minor changes in figure order |
Rmd | 2ac1833 | toobiwankenobi | 2021-01-08 | changes to Figures |
Rmd | 9442cb9 | toobiwankenobi | 2020-12-22 | add all new files |
Rmd | 1af3353 | toobiwankenobi | 2020-10-16 | add stuff |
Rmd | a6b51cd | toobiwankenobi | 2020-10-14 | clean scripts, add new subfigures |
Rmd | d8819f2 | toobiwankenobi | 2020-10-08 | read new data (nuclei expansion) and adapt scripts |
Rmd | a21c858 | toobiwankenobi | 2020-08-06 | adapt pipeline |
Rmd | 2c11d5c | toobiwankenobi | 2020-08-05 | add new scripts |
This script generates plots for Figure 2. Panel A was created manually.
knitr::opts_chunk$set(echo = TRUE, message= FALSE)
knitr::opts_knit$set(root.dir = rprojroot::find_rstudio_root_file())
sapply(list.files("code/helper_functions", full.names = TRUE), source)
code/helper_functions/calculateSummary.R
value ?
visible FALSE
code/helper_functions/censor_dat.R
value ?
visible FALSE
code/helper_functions/detect_mRNA_expression.R
value ?
visible FALSE
code/helper_functions/DistanceToClusterCenter.R
value ?
visible FALSE
code/helper_functions/findMilieu.R code/helper_functions/findPatch.R
value ? ?
visible FALSE FALSE
code/helper_functions/getInfoFromString.R
value ?
visible FALSE
code/helper_functions/getSpotnumber.R
value ?
visible FALSE
code/helper_functions/plotCellCounts.R
value ?
visible FALSE
code/helper_functions/plotCellFractions.R
value ?
visible FALSE
code/helper_functions/plotDist.R code/helper_functions/read_Data.R
value ? ?
visible FALSE FALSE
code/helper_functions/scatter_function.R
value ?
visible FALSE
code/helper_functions/sceChecks.R
value ?
visible FALSE
code/helper_functions/validityChecks.R
value ?
visible FALSE
library(SingleCellExperiment)
library(ComplexHeatmap)
library(data.table)
library(dplyr)
library(tidyr)
library(ggpmisc)
library(cowplot)
library(corrplot)
library(gridExtra)
library(ggbeeswarm)
library(ggpubr)
library(RColorBrewer)
library(colorRamps)
library(circlize)
library(forcats)
library(viridis)
library(psych)
library(ggpmisc)
sce_rna <- readRDS(file = "data/data_for_analysis/sce_RNA.rds")
sce_prot <- readRDS(file= "data/data_for_analysis/sce_protein.rds")
sce_rna <- sce_rna[,sce_rna$Location != "CTRL"]
sce_prot <- sce_prot[,sce_prot$Location != "CTRL"]
cur_dt <- as.data.table(colData(sce_rna))
# combinations with more than 600 occurrences
targets <- metadata(sce_rna)$chemokines_morethan600_withcontrol
targets_no_control <- replace(targets, match(c("CXCL8", "CCL18"),targets), c("CCL18", "CXCL8"))
# remove control samples
cur_dt <- cur_dt[MM_location_simplified != "control",]
# extract chemokine columns
chemokines <- cbind(cur_dt[,c("ImageNumber", "MM_location_simplified", "celltype")], cur_dt[,grepl(glob2rx("C*L*"),names(cur_dt)), with = F])
# create combination matrix
m <- make_comb_mat(chemokines, top_n_sets = 11)
# filter based on combination size and combination degree
m <- m[comb_size(m) >= 600 & comb_degree(m) > 0]
# sort according to abundance
m <- m[order(-comb_size(m))]
# extract comb names
comb_names <- comb_name(m)
# count celltypes for each combination
celltypes <- data.table()
location <- data.table()
# summarize statistics for each combination (celltype fractions, location)
for (i in comb_names){
# subset
set <- chemokines[extract_comb(m, i)]
# chemokines celltypes
set1 <- set %>%
group_by(celltype) %>%
summarise(n=n()) %>%
reshape2::dcast(.,i ~ celltype, value.var = "n")
# chemokines by location
set2 <- set %>%
group_by(ImageNumber, MM_location_simplified) %>%
summarise(n=n())
# add images with no combinations to not distort median
set2_add <- distinct(cur_dt[,c("ImageNumber", "MM_location_simplified")], ImageNumber, .keep_all = T)
set2_add$n <- 0
# subset to only contain images which are not already part of set2
set2_add <- set2_add[!(ImageNumber %in% set2$ImageNumber),]
set2 <- set2 %>%
rbind(., set2_add) %>%
group_by(MM_location_simplified) %>%
mutate(median = median(n)) %>%
distinct(MM_location_simplified, median) %>%
reshape2::dcast(.,i ~ MM_location_simplified, value.var = "median")
# add to data.frame
celltypes <- rbind(celltypes, set1, fill = TRUE)
location <- rbind(location, set2, fill = TRUE)
}
# replace NA
celltypes[is.na(celltypes)] <- 0
location[is.na(location)] <- 0
# properties of combination matrix
ss = set_size(m)
cs = comb_size(m)
# calculate fraction of chemokine combinations per patient
fraction_patient <- cur_dt %>%
select(PatientID, expressor) %>%
filter(expressor != "NA") %>%
group_by(PatientID, expressor) %>%
summarise(n=n()) %>%
group_by(expressor) %>%
mutate(fraction = n / sum(n)) %>%
reshape2::dcast(expressor ~ PatientID, value.var = "fraction", fill = 0) %>%
filter(expressor %in% targets) %>%
reshape2::melt(id.vars=c("expressor"), variable.name="PatientID", value.name="fraction")
# how many chemokine combis are found in top10 patients?
fraction_patient <- fraction_patient %>%
group_by(expressor) %>%
slice_max(fraction, n=10) %>%
summarise(top10=round(sum(fraction)*100,0))
# change row-order to match targets and remove expressor column (only keep fractions)
fraction_patient <- fraction_patient[match(targets,fraction_patient$expressor),-1]
# max fraction coming from one image per expressor
fraction_patient$top10 <- paste0(fraction_patient$top10, "%")
# create plot
ht = UpSet(m,
set_order = order(ss),
comb_order = order(cs, decreasing = T),
top_annotation = HeatmapAnnotation(
"Number of\nExpressing Cells" = anno_barplot(celltypes[,-1],
ylim = c(0, max(cs)*1.1),
border = FALSE,
gp = gpar(fill = metadata(sce_rna)$colour_vectors$celltype[colnames(celltypes[,-1])]),
axis_param = list(gp = gpar(fontsize=14)),
height = unit(7.5, "cm")),
annotation_name_side = "left",
annotation_name_rot = 0,
annotation_name_gp = gpar(fontsize=14)),
left_annotation = rowAnnotation(
"Total Number of\nExpressing Cells" = anno_barplot(-ss,
baseline = 0,
axis_param = list(
at = c(0, -5000, -10000, -15000),
labels = c(0, 5000, 10000, 15000),
labels_rot = 0,
gp = gpar(fontsize = 12)),
border = FALSE,
gp = gpar(fill = "black"),
width = unit(3, "cm"),
),
set_name = anno_text(set_name(m),
location = 0.5,
gp = gpar(fontsize=14),
just = "center",
width = max_text_width(set_name(m)) + unit(4, "mm")),
annotation_name_gp = gpar(fontsize=20)),
right_annotation = NULL,
show_row_names = FALSE,
pt_size = unit(3, "mm"),
lwd = 2,
width = unit(8, "cm"),
height = unit(8, "cm"),
bottom_annotation = HeatmapAnnotation(Top10 = anno_text(t(fraction_patient),
just = "center", location = 0.5,
rot = 90,
gp = gpar(fontsize=13))),
)
# draw heatmap
ht = draw(ht)
# add absolute numbers on top of barplot
od = column_order(ht)
row_od = row_order(ht)
decorate_annotation("Number of\nExpressing Cells", {
grid.text(cs[od], x = seq_along(cs), y = unit(cs[od], "native") + unit(2, "pt"),
default.units = "native", just = c("left", "bottom"),
gp = gpar(fontsize = 13, col = "#404040"), rot = 45)
})
decorate_annotation("Total Number of\nExpressing Cells", {
grid.text(ss[row_od],
x = unit(-ss[row_od], "native") + unit(-0.75, "cm"),
y = rev(seq_len(length(-ss))),
default.units = "native", rot = 0,
gp = gpar(fontsize = 11))
})
Version | Author | Date |
---|---|---|
3697a9b | toobiwankenobi | 2022-02-22 |
# legend for celltypes
lgd1 = Legend(labels = colnames(celltypes[,-1]),
title = "Celltypes",
legend_gp = gpar(fill = metadata(sce_rna)$colour_vectors$celltype[colnames(celltypes[,-1])],
fontsize = 18),
nrow = 5)
draw(packLegend(lgd1,column_gap = unit(0.5, "cm"),
max_height = unit(7, "cm")))
Version | Author | Date |
---|---|---|
3697a9b | toobiwankenobi | 2022-02-22 |
# add marker expression to cells
marker_expression <- data.frame(t(assay(sce_rna[rowData(sce_rna)$good_marker,], "asinh")))
marker_expression$cellID <- rownames(marker_expression)
# chemokine info
chemo <- data.frame(colData(sce_rna))[,c("cellID", "expressor", "celltype")]
dat <- left_join(chemo, marker_expression, by = "cellID")
dat$cellID <- NULL
# aggregate data
dat_aggr <- dat %>%
filter(expressor %in% colnames(colData(sce_rna))[grepl("CXCL|CCL", colnames(colData(sce_rna)))]) %>%
group_by(celltype, expressor) %>%
summarise_all(funs(mean))
Warning: `funs()` was deprecated in dplyr 0.8.0.
Please use a list of either functions or lambdas:
# Simple named list:
list(mean = mean, median = median)
# Auto named with `tibble::lst()`:
tibble::lst(mean, median)
# Using lambdas
list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
# prepare matrix for heatmap
dat_aggr <- dat_aggr %>%
arrange(celltype, expressor)
stats <- dat %>%
filter(expressor %in% colnames(colData(sce_rna))[grepl("CXCL|CCL", colnames(colData(sce_rna)))]) %>%
group_by(celltype, expressor) %>%
summarise(n=n()) %>%
filter(n>1000) %>%
arrange(celltype, expressor)
dat_aggr <- dat_aggr %>%
filter(paste0(celltype,expressor) %in% paste0(stats$celltype,stats$expressor))
# factorize expressor for column sorting in heatmap
dat_aggr$expressor <- factor(dat_aggr$expressor, levels = c("CCL4", "CCL18", "CCL22", "CXCL8",
"CCL8", "CXCL9", "CXCL10", "CXCL13", "CCL2", "CXCL12", "CCL19"))
stats$expressor <- factor(stats$expressor, levels = c("CCL4", "CCL18", "CCL22", "CXCL8",
"CCL8", "CXCL9", "CXCL10", "CXCL13", "CCL2", "CXCL12", "CCL19"))
dat_aggr <- dat_aggr %>%
arrange(celltype, expressor)
stats <- stats %>%
arrange(celltype, expressor)
# create and scale scale matrix
m <- as.matrix(t(dat_aggr[,-c(1:2)]))
m <- t(scale(t(m)))
colnames(m) <- dat_aggr$celltype
# create top annotations
ha <- HeatmapAnnotation("Chemokine" = dat_aggr$expressor,
"Cells" = anno_barplot(stats[,3],
height = unit(1.5,"cm"),
axis_param = list(gp = gpar(fontsize=14))),
"Cell Numbers" = anno_text(t(stats[,3]),
which = "column",
rot = 90,
just = "center",
location = 0.5,
gp = gpar(fontsize=14)),
col = list("Chemokine" = metadata(sce_rna)$colour_vectors$chemokine_single),
show_legend = FALSE,
annotation_name_gp = gpar(fontsize = 16))
# row_split for markers
rowData(sce_rna)$heatmap_relevance <- ""
rowData(sce_rna[rowData(sce_rna)$good_marker,])$heatmap_relevance <- "Lineage"
rowData(sce_rna[grepl("CXCL|CCL|DapB", rownames(sce_rna)),])$heatmap_relevance <- "Chemokine"
rowData(sce_rna[grepl("B2M|GLUT1|CD134|Lag3|CD163|cleavedPARP|pRB", rownames(sce_rna)),])$heatmap_relevance <- "Other"
# create heatmap
h <- Heatmap(m, name = "Scaled\nExpression",
row_split = rowData(sce_rna[rowData(sce_rna)$good_marker,])$heatmap_relevance,
cluster_columns = FALSE,
show_column_names = FALSE,
top_annotation = ha,
show_heatmap_legend = FALSE,
column_split = colnames(m),
column_title_rot = 90,
cluster_column_slices = TRUE,
row_names_gp = gpar(fontsize = 13),
column_title_gp = gpar(fontsize = 16),
row_title_gp = gpar(fontsize = 16),
col = colorRamp2(c(-3, 0, 3), c("blue", "white", "red")),
height = unit(15, "cm"),
width = unit(11,"cm"))
# draw heatmap
draw(h)
Version | Author | Date |
---|---|---|
3697a9b | toobiwankenobi | 2022-02-22 |
lgd1 = color_mapping_legend(h@matrix_color_mapping, plot = FALSE, legend_direction = "horizontal", legend_width=unit(3,"cm"), at = c(-3:3))
lgd2 = color_mapping_legend(ha@anno_list$Chemokine@color_mapping, plot = FALSE, legend_direction = "horizontal", nrow = 4)
lgd_list = packLegend(lgd1,lgd2,direction = "horizontal", gap = unit(1,"cm"))
draw(lgd_list)
Version | Author | Date |
---|---|---|
3697a9b | toobiwankenobi | 2022-02-22 |
# define chemokines
targets <- metadata(sce_rna)$chemokines_morethan600_withcontrol
# top abundant chemokines
cur_rna <- data.frame(colData(sce_rna))
# protein data
cur_prot <- data.frame(colData(sce_prot))
# sum
rna_sum <- cur_rna %>%
group_by(Description) %>%
mutate(total_cells=n()) %>%
ungroup() %>%
group_by(Description, total_cells, expressor) %>%
summarise(n=n()) %>%
mutate(fraction=n/total_cells) %>%
reshape2::dcast(Description ~ expressor, value.var = "fraction", fill = 0)
# only keep highly abundant chemokines
rna_sum <- rna_sum[,c("Description", targets)]
prot_sum <- cur_prot %>%
group_by(Description, celltype) %>%
summarise(n = n()) %>%
group_by(Description) %>%
mutate(fraction = n/sum(n)) %>%
reshape2::dcast(Description ~ celltype, value.var = "fraction", fill = 0)
# equal images
all(rna_sum$Description == prot_sum$Description)
[1] TRUE
# correlation
cor <- psych::corr.test(rna_sum[,-1], prot_sum[,-1], method = "pearson",adjust = "BH")
cur_dat <- as.data.frame(cor$r)
cur_dat$variable <- rownames(cur_dat)
dat_long <- reshape2::melt(cur_dat,id.vars="variable")
colnames(dat_long) <- c("chemokines","celltypes","correlation")
p_dat <- as_tibble(cor$p)
p_dat$variable <- rownames(cur_dat)
pdat_long <- reshape2::melt(p_dat,id.vars="variable")
colnames(pdat_long) <- c("chemokines","celltypes","p_adj")
dat_long$p_adj <- pdat_long$p_adj
dat_long <- dat_long %>%
mutate(sig = ifelse(p_adj <= 0.001 & p_adj > 0.0001,0.001,p_adj))
dat_long <- dat_long %>%
mutate(sig = case_when(p_adj <= 0.0001 ~ "< 0.0001",
p_adj <= 0.001 & p_adj > 0.0001 ~ "< 0.001",
p_adj <= 0.01 & p_adj > 0.001 ~ "< 0.01",
p_adj <= 0.1 & p_adj > 0.01 ~ "< 0.1",
p_adj >0.1 ~ "ns"))
# plot
a <- ggplot()+
geom_tile(data = dat_long, aes(x = chemokines,y = celltypes,fill=sig),color = "gray",size = 0.1, alpha = 0.5)+
scale_fill_manual(values = c("< 0.0001" = "darkgreen", "< 0.001" = "green3", "< 0.01"="green", "< 0.1" = "lightgray","ns" = "white"), name = "adj p-value" )+
theme_classic()+
theme(axis.text.x = element_text(angle = 90,hjust = 1,vjust = 0.5),
text = element_text(size=18)) +
geom_point(data = dat_long, aes(x=chemokines,y = celltypes),size=5.5, show.legend = FALSE) +
geom_point(data = dat_long, aes(x=chemokines,y = celltypes, color=correlation),size= 5, shape=19) +
scale_color_gradient2(low="blue",mid= "white", high="red", name = "Pearson correlation") +
xlab("Chemokines") +
ylab("Cell Types")
a + theme(legend.position="none")
Version | Author | Date |
---|---|---|
3697a9b | toobiwankenobi | 2022-02-22 |
legend <- get_legend(a)
as_ggplot(legend)
Version | Author | Date |
---|---|---|
3697a9b | toobiwankenobi | 2022-02-22 |
sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] psych_2.1.9 viridis_0.6.2
[3] viridisLite_0.4.0 forcats_0.5.1
[5] circlize_0.4.13 colorRamps_2.3
[7] RColorBrewer_1.1-2 ggpubr_0.4.0
[9] ggbeeswarm_0.6.0 gridExtra_2.3
[11] corrplot_0.92 cowplot_1.1.1
[13] ggpmisc_0.4.5 ggpp_0.4.3
[15] ggplot2_3.3.5 tidyr_1.2.0
[17] data.table_1.14.2 ComplexHeatmap_2.10.0
[19] SingleCellExperiment_1.16.0 SummarizedExperiment_1.24.0
[21] Biobase_2.54.0 GenomicRanges_1.46.1
[23] GenomeInfoDb_1.30.1 IRanges_2.28.0
[25] S4Vectors_0.32.3 BiocGenerics_0.40.0
[27] MatrixGenerics_1.6.0 matrixStats_0.61.0
[29] dplyr_1.0.7 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] colorspace_2.0-2 ggsignif_0.6.3 rjson_0.2.21
[4] ellipsis_0.3.2 rprojroot_2.0.2 XVector_0.34.0
[7] GlobalOptions_0.1.2 fs_1.5.2 clue_0.3-60
[10] rstudioapi_0.13 farver_2.1.0 MatrixModels_0.5-0
[13] fansi_1.0.2 codetools_0.2-18 mnormt_2.0.2
[16] doParallel_1.0.16 knitr_1.37 jsonlite_1.7.3
[19] broom_0.7.12 cluster_2.1.2 png_0.1-7
[22] compiler_4.1.2 httr_1.4.2 backports_1.4.1
[25] assertthat_0.2.1 Matrix_1.4-0 fastmap_1.1.0
[28] cli_3.1.1 later_1.3.0 htmltools_0.5.2
[31] quantreg_5.87 tools_4.1.2 gtable_0.3.0
[34] glue_1.6.1 GenomeInfoDbData_1.2.7 reshape2_1.4.4
[37] Rcpp_1.0.8 carData_3.0-5 jquerylib_0.1.4
[40] vctrs_0.3.8 nlme_3.1-155 iterators_1.0.13
[43] xfun_0.29 stringr_1.4.0 ps_1.6.0
[46] lifecycle_1.0.1 rstatix_0.7.0 getPass_0.2-2
[49] zlibbioc_1.40.0 scales_1.1.1 promises_1.2.0.1
[52] parallel_4.1.2 SparseM_1.81 yaml_2.2.2
[55] sass_0.4.0 stringi_1.7.6 highr_0.9
[58] foreach_1.5.2 shape_1.4.6 rlang_1.0.0
[61] pkgconfig_2.0.3 bitops_1.0-7 evaluate_0.14
[64] lattice_0.20-45 purrr_0.3.4 labeling_0.4.2
[67] processx_3.5.2 tidyselect_1.1.1 plyr_1.8.6
[70] magrittr_2.0.2 R6_2.5.1 magick_2.7.3
[73] generics_0.1.2 DelayedArray_0.20.0 DBI_1.1.2
[76] pillar_1.7.0 whisker_0.4 withr_2.4.3
[79] abind_1.4-5 RCurl_1.98-1.5 tibble_3.1.6
[82] crayon_1.4.2 car_3.0-12 utf8_1.2.2
[85] tmvnsim_1.0-2 rmarkdown_2.11 GetoptLong_1.0.5
[88] callr_3.7.0 git2r_0.29.0 digest_0.6.29
[91] httpuv_1.6.5 munsell_0.5.0 beeswarm_0.4.0
[94] vipor_0.4.5 bslib_0.3.1